Advertisement

Somatosensory System

  • C. Vierck

Abstract

The intent of this chapter is to describe research which provides correlations of neural events in the somatosensory system with their sensory accompaniments. The first part outlines the anatomical and physiological organization of the system at the early stages of processing (i.e., the periphery and spinal cord), because all subsequent coding operations of the CNS depend fundamentally on this information. The later sections of the chapter examine the system from a behavioral viewpoint; there, neural coding is discussed in relation to several sensory qualities that in the past have been studied as submodalities of somesthesis.

Keywords

Receptive Field Dorsal Column Somatosensory System Glabrous Skin Spinal Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albe-Fessard, D., Levante, A., and Lamour, Y. Origin of spinothalamic tract in monkeys. Brain Res., 1974, 65, 503–509.Google Scholar
  2. Albe-Fessard, D., Boivie, J., Grant, G., and Levante, A. Labelling of cells in the medulla oblongata and the spinal cord of the monkey after injections of horseradish peroxidase in the thalamus. Neurosci. Lett., 1975, 1, 75–80.Google Scholar
  3. Allen, G. C., Orbach, J., Berman, D., and Berman, A. J., Forelimb deafferentation in rhesus monkeys: Precise movements without visual guidance. Neurosci. Abstr., 1975, 1, 155.Google Scholar
  4. Allen, W. F. Effect of partial and complete destruction of the tactile cerebral cortex on correct conditioned differential foreleg response from cutaneous stimulation. Am. J. Physiol., 1947, 151, 325–337.Google Scholar
  5. Amassian, V. E., and Giblin, D. Periodic components in steady-state activity of cuneate neurones and their possible role in sensory coding. J. Physiol. (London), 1974, 243, 353–385.Google Scholar
  6. Andersson, S. A., Finger, S., and Norrsell, U. Cerebral units activated by tactile stimuli via a ventral spinal pathway in monkeys. Acta Physiol. Scand., 1975, 93, 119–128.Google Scholar
  7. Andres, K. H. and von During, M. Morphology of cutaneous receptors. In Handbook of Sensory Physiology, Vol. II. Springer-Verlag, Berlin, 1973, pp. 3–28.Google Scholar
  8. Andrew, B. L. The sensory innervation of the medial ligament of the knee joint. J. Physiol. (London), 1954, 123, 241–250.Google Scholar
  9. Angaut-Petit, D. The dorsal column system. II. Functional properties and bulbar relay of the postsynaptic fibers of the eat’s fasciculus gracilis. Exp. Brain Res., 1975, 22, 471–493.Google Scholar
  10. Applebaum, A. E., Beall, J. E., Foreman, R. D., and Willis, N. D., Organization and receptive fields of primate spinothalamic tract neurons. J. Neurophysiol., 1975, 38, 572–586.Google Scholar
  11. Azulay, A., and Schwartz, A. S. The role of the dorsal funiculus of the primate in tactual discriminations. Exp. Neurol., 1975, 46, 315–332.Google Scholar
  12. Baker, M. A., Tyner, C. F., and Towe, A. L. Observations on single neurons recorded in the sigmoid gyre of awake, nonparalyzed cats. Exp. Neurol., 1971, 32, 388–403.Google Scholar
  13. Basbaum, A. Conduction of the effects of noxious stimulation by short-fiber multisynaptic systems in the spinal cord of the rat. Exp. Neurol., 1973, 40, 699–716.Google Scholar
  14. Bates, J. A. V., and Ettlinger, G. Posterior biparietal ablations in the monkey. Arch. Neurol. (Chicago), 1960, 9, 333–335.Google Scholar
  15. Bava, A., Fadiga, E., and Mangoni, T., Extra lemniscal reactivity and commissural linkages in the VPL nucleus of cats with chronic cortical lesions. Arch. ftal. Biol., 1968, 106, 204–206.Google Scholar
  16. Beck, C., and Chanbers, W. W., Speed, accuracy and strength of forelimb movement after unilateral pepamidotomy in rhesus monkeys. J. Compo Physiol. Psychol. Monoqr., 1970, 70, 1–22.Google Scholar
  17. Benjamin, F. G. Release of intracellular potassium as a factor in pain production. In D. R. Kenshalo (ed.), The Skin Senses. Thomas, Springfield, Ill., 1968, pp. 466–479.Google Scholar
  18. Berkley, K.J., and Parmer, R. Somatosensory cortical involvement in response to noxious stimulation in the cat. Exp. Brain Res., 1974, 20, 363–374.Google Scholar
  19. Bessou, P., and Perl, E. R. Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J. Neurophysiol., 1969, 32, 1025–1043.Google Scholar
  20. Bessou, P., Burgess, P. R., Perl, E. R., and Taylor, C. B,. Dynamic properties of mechanoreceptors with unmyelinated (C) fibers. J. Neurophysiol., 1971, 34, 116–13l.Google Scholar
  21. Blomquist, A. J., and Lorenzini, C. A. Projection of dorsal roots and sensory nerves to cortical sensory motor regions of squirrel monkey. J. Neurophysiol., 1965, 28, 1195–1205.Google Scholar
  22. Blum, P., and Whitehorn, D. Wide-field neurons in the cuneate nucleus of cat. Fed. Proc., 1973, 32, 399.Google Scholar
  23. Boivie, J. The termination of the cervicothalamic tract in the cat: An experimental study with silver impregnation methods. Brain Res., 1970, 19, 333–360.Google Scholar
  24. Boivie, J. The termination of the spinothalamic tract in the cat. An experimental study with silver impregnation methods. Exp. Brain Res., 1971, 12, 331–353.Google Scholar
  25. Bossom, J., and Ommaya, A. K. Visuomotor adaption (to prismatic transformation of the retinal image) in monkeys with bilateral dorsal rhizotomy. Brain, 1966, 91, 161–172.Google Scholar
  26. Bowsher, D. The anatomophysiological basis of somatosensory discrimination. Int. Rev. Neurobiol., 1965, 8, 35–75.Google Scholar
  27. Bowsher, D. Characteristics of central non-specific somatosensory systems. In H. H. Kornhuber (ed.), The Somatosensory System. Georg Theime, Stuttgart, 1975, pp. 68–77.Google Scholar
  28. Bowsher, D., Mallart, A., Petit, D., and Albe-Fessard, D. A bulbar relay to the centre median. J. Neurophysiol., 1968, 31, 288–300.Google Scholar
  29. Boyd, I. A., and Roberts, T. D. M. Proprioceptive discharges from stretch receptors in the kneejoint of the cat. J. Physiol. (London), 1953, 122, 38–58.Google Scholar
  30. Brindley, G. S., and Merton, P. A. The absence of position sense in the human eye. J. Physiol. (London), 1960, 153, 127–130.Google Scholar
  31. Brown, A. G. Cutaneous afferent fiber collaterals in the dorsal column of the cat. Exp. Brain Res., 1968, 5, 293–305.Google Scholar
  32. Brown, A. G. Effects of descending impulses on transmission through the spinocervical tract. J. Physiol. (London), 1971, 219, 103–125.Google Scholar
  33. Brown, A. G. Ascending and long spinal pathways: Dorsal columns, spinocervical tract and spinothalamic tract. In Handbook of Sensory Physiology, Vol. II. Springer-Verlag, Berlin, 1973, pp. 315–338.Google Scholar
  34. Brown, A. G., and Franz, D. N. Responses of spinocervical tract neurones to natural stimulation of identified cutaneous receptors. Exp. Brain Res., 1969, 7, 231–249.Google Scholar
  35. Brown, A. G., and Iggo, A. A quantitative study of cutaneous receptors and afferent fibers in the cat and rabbit. J. Physiol. (London), 1967, 193, 707–733.Google Scholar
  36. Brown, A. G., and Martin H. F., III. Effects on transmission through the spinocervical tract evoked from the dorsal columns and the dorsal column nuclei. J. Physiol. (London), 1972, 224, 34–35P.Google Scholar
  37. Brown, A. G., Gordon, G., and Kay, R. H. Cutaneous receptive properties of single fibers in the eat’s medial lemniscus. J. Physiol. (London), 1970, 211, 37–39P.Google Scholar
  38. Browne, M. C., Lee, J., and Ring, P. A. The sensation of passive movement at the metatarso-phalangeal joint of the great toe in man. J. Physiol. (London), 1954, 126, 448–458.Google Scholar
  39. Bryan, R. N., Coultier, J. D., and Willis, W. D. Cells of origin of the spinocervical tract in the monkey. Exp. Neurol., 1974, 42, 574–536.Google Scholar
  40. Bucy, P. C., Ladpli, R., and Ehrlich, A. Destruction of the pyramidal tract in the monkey. J. Neurosurg., 1966, 25, 1–20.Google Scholar
  41. Burgess, P. R. Patterns of discharge evoked in cutaneous nerves and their significance for sensation. Adv. Neurol., 1974, 4, 11–18.Google Scholar
  42. Burgess, P. R., and Clark, F. J. Characteristics of knee joint receptors in the cat. J. Physiol. (London), 1969a, 203, 301–317.Google Scholar
  43. Burgess, P. R., and Clark, F. J. Dorsal column projection of fibers from the cat knee joint. J. Physiol. (London), 1969b, 203, 281–299.Google Scholar
  44. Burgess, P. R., and Perl, E. R. Myelinated afferent fibers responding specifically to noxious stimulation of the skin. J. Physiol. (London), 1967, 190, 541–562.Google Scholar
  45. Burgess, P. R., and Perl, E. R. Cutaneous mechanoreceptors and nociceptos. In Handbook of Sensory Physiology, Vol. 2. Springer-Verlag, Berlin, 1973, pp. 29–78.Google Scholar
  46. Burgess, P. R., Petit, D., and Warren R. M. Receptor types in cat hairy skin supplied by myelinated fibers. J. Neurophysiol., 1968, 31, 833–855.Google Scholar
  47. Carreras, M., and Andersson, S. A. Functional properties of neurons of the anterior ectosylvian gyrus of the cat. J. Neurophysiol., 1963, 26, 100–126.Google Scholar
  48. Casey, K. L., Keene, J. J., and Morrow, T. Bulboreticular and medial thalamic unit activity in relation to aversive behavior and pain. Adv. Neurol., 1974, 4, 197–206.Google Scholar
  49. Cauna, N., Functional significance of the submicroscopical, histochemical and microscopical organization of the cutaneous receptor organs. Anal. Anz., 1962, 3, Suppl. 2, 181–197.Google Scholar
  50. Cauna, N., Fine structure of the receptor organs and its probable functional significance. In A. V. S. de Reuk and J. Knight (eds.), Touch, Heat and Pain. Churchill, London, 1966, pp. 117–127.Google Scholar
  51. Chambers, M. F., Andres, K. H., Duering, M. V., and Iggo, A. The structure and function of the slowly adaptive type II receptor in hairy skin. A. J. Exp. Physiol., 1972, 57, 417–445.Google Scholar
  52. Christensen, B. N., and Perl, E. R. Spinal neurons specifically excited by noxious or thermal stimuli: Marginal zone of the dorsal horn. J. Neurophysiol., 1970, 33, 293–307.Google Scholar
  53. Clark, F. J., Horch, K. W., Burgess, P. R., and Bach, S. M. Static awareness of knee joint angle is not affected by local anesthetic block of knee joint receptors. Neurosci. Abstr., 1975, 1, 132.Google Scholar
  54. Clifton, G. L., Vance, W. H., Applebaum, M. L., Coggeshall, R. F., and Willis, W. D., Jr. Responses of unmyelinated afferents in the mammalian ventral root. Brain Res., 1974, 32, 163–167.Google Scholar
  55. Cole, J., and Glees, P. Effects of small lesions in sensory cortex in trained monkeys. J. Neurophysiol., 1954, 17, 1–13.Google Scholar
  56. Conrad, B., Matsunami, K., Meger-Lohmann, J., Wiesendanger, N., and Brooks, V. B. Cortical load compensation during voluntary elbow movements. Brain Res., 1974, 71, 507–514.Google Scholar
  57. Cook, A. W., and Browder, E. J. Function of posterior columns in man. Arch. Neurol. (Chicago), 1965, 12, 72–79.Google Scholar
  58. Corkin, S., Milner, B., and Rasmussen, T. Effects of different cortical excisions on sensory thresholds in man. Tra·ns. Am. Neurol. Assoc., 1964, 112–116.Google Scholar
  59. Coultier, J. D. Sensory transmission through lemniscal pathway during voluntary movement in the cat. J. Neurophysiol., 1974, 37, 831–845.Google Scholar
  60. Coultier, J. D., Maunz, R. A., and Willis, W. D. Effects of stimulation of sensorimotor cortex on primate spinothalamic neurons. Brain Res., 1974, 65, 351–356.Google Scholar
  61. Cragg, B. G., and Downer, J. de C. Behavioral evidence for cortical involvement in manual temperature discrimination in the monkey. Exp. Neurol., 1967, 19, 433–442.Google Scholar
  62. Critchley, J. The Parietal Lobes. Hafner, New York, 1969.Google Scholar
  63. Cross, M. J., and McCloskey, D. I. Position sense following surgical removal of joints. Brain Res., 1973, 55, 443–445.Google Scholar
  64. Curry, M.J. The exteroceptive properties ofneurones in the somatic part of the posterior groups (PO). Brain Res., 1972, 44, 439–462.Google Scholar
  65. Darian-Smith, I., Isbister, J., Mok, H., and Yokota, T., Somatic sensory cortical projection areas excited by tactile stimulation of the cat: A triple representation. J. Physiol. (London), 1966, 182, 671–689.Google Scholar
  66. Darian-Smith, I., Johnson, K. O., and LaMotte, C. Peripheral neural determinants in the sensing of changes in skin temperature. In H. H. Kornhuber (ed.), The Somatosensory System. Georg Thieme, Stuttgart, 1975, 23–37.Google Scholar
  67. Dart, A. M., and Gordon, G. Some properties of spinal connections of the eat’s dorsal column nuclei which do not involve the dorsal columns. Brain Res., 1973, 58, 61–68.Google Scholar
  68. Denavit, M., and Korsinski, E. E., Somatic afferents to the cat subthalamus. Arch. Ital. Biol., 1968, 106, 391-411.Google Scholar
  69. Denny-Brown, D., and Chambers, R. A. The parietal lobe and behavior. Assoc. Res. Nerv. Ment. Dis., 1958, 36, 35–117.Google Scholar
  70. DeVito, J. L., Ruch, T. C., and Patton, H. D. Analysis of residual weight discriminatory ability and evoked potentials following section of dorsal columns in monkeys. Indian J. Physiol. Pharmacol., 1964, 8, 117–126.Google Scholar
  71. Diamond, I. T. The sensory neocortex. Contrib. Sensory Physiol. 1967, 2, 51.Google Scholar
  72. Diamond, I. T., Randall, W., and Springer, L. Tactual localization in cats deprived of cortical areas SI and SII and the dorsal columns. Psychon. Sci., 1964, 1, 261–262.Google Scholar
  73. Dobry, P. J. K., and Casey, K. L. Roughness discrimination in cats with dorsal column lesions. Brain Res., 1972a, 44, 385–397.Google Scholar
  74. Dobry, P. J. K., and Casey, K. L. Coronal somatosensory unit responses in cats with dorsal column lesions. Brain Res., 1972b, 44, 399–416.Google Scholar
  75. Douglass, W. W., and Ritchie, J. M. Non-medullated fibers in the saphenous nerve which signal touch. J. Physiol. (London), 1957, 139, 385–399.Google Scholar
  76. Drager, V. C., and Hubel, D. H. Responses to visual stimulation and relationship between visual, auditory and somatosensory inputs in mouse superior colliculus. J. Neurophysiol., 1975, 36, 690–713.Google Scholar
  77. Dreyer, D. A., Schneider, R. J., Metz, C. B., and Whitsel, B. L. Differential contributions of spinal pathways to body representation in postcentral gyrus of Macaca mulatta. J. Neurophysiol., 1974, 37, 119–145.Google Scholar
  78. Dubrovsky, B., and Garcia-Rill, E. Role of dorsal columns in sequential motor acts requiring precise forelimb projection. Exp. Brain Res., 1973, 18, 165–177.Google Scholar
  79. Dubrovsky, B., Davelaar, F., and Garcia-Rill, E. The role of dorsal columns in serial order acts. Exp. Neurol., 1971, 33, 93–102.Google Scholar
  80. Duffy, F. H., and Burchfiel, J. L. Somatosensory system: Organizational hierarchy from single units in monkey area 5. Science, 1971, 172, 273–275.Google Scholar
  81. Dyhre-Poulsen, P. Increased vibration threshold before movements in human subjects. Exp. Neurol., 1975, 47, 516–522.Google Scholar
  82. Ebner, F. F., and Myers, R. F. Corpus callosum and the interhemispheric transfer oftactuallearning.J. Neurophysiol., 1962, 25, 380–391.Google Scholar
  83. Eidelberg, E., and Schwartz, A. S. Experimental analysis of the extinction phenomenon in monkeys. Brain, 1971, 94, 91–108.Google Scholar
  84. Eidelberg, E., and Woodbury, C. M. Apparent redundancy in the somatosensory system in monkeys. Exp. Neurol., 1972, 37, 573–581.Google Scholar
  85. Eidelberg, E., Kreinick, C. J., and Langescheid, C. On the possible functional role of afferent pathways in skin sensation. Exp. Neurol., 1975, 47, 419–432.Google Scholar
  86. Erickson, R. P. Stimulus coding in topographic and non-topographic modalities: On the significance of the activity of individual sensory neurons. Psychol. Rev., 1968, 75, 447–465.Google Scholar
  87. Evarts, E. V., and Tanji, J. Gating of motor cortex reflexes by prior instruction. Brain Res., 1974, 71, 479–494.Google Scholar
  88. Ferraro, A., and Barrera, S. E. Effects of experimental lesions of the posterior columns in Macacus rhesus monkeys. Brain, 1934, 57, 307–332.Google Scholar
  89. Festinger, L. Eye movements and perception. In P. Bach, Y. Rita et al. (eds.), The Control of Eye Movements. Academic Press, New York, 1971, pp. 259–273.Google Scholar
  90. Fields, H. L., Partridge, L. D., and Winter, D. L. Somatic and visual receptive field properties of fibers in ventral quadrant white matter of the cat spinal cord. J. Neurophysiol., 1970, 33, 827–837.Google Scholar
  91. Fields, H. L., Adams, J.E., and Hosobuchi, Y. Peripheral nerve and cutaneous electrohypalgesia. Adv. Neurol., 1974, 4, 749–754.Google Scholar
  92. Franz, D. N., and Iggo, A. Dorsal root potentials and ventral root reflexes evoked by non myelinated fibers. Science, 1968, 162, 1140–1142.Google Scholar
  93. Frommer, G. P., Trefz, B. R., and Casey, K. L. Somatosensory function and cortical unit activity in cats with only dorsal column fibers. Neurosci. Abstr., 1975, 1, 120.Google Scholar
  94. Gahery, Y., and Vigier, D. Inhibitory effects in the cuneate nucleus produced by vago-aortic afferent fibers. Brain Res., 1974, 75, 241–246.Google Scholar
  95. Galbraith, G. C., Gottschaldt, K.-M., and Schultz, W. Unit activity in the somatosensory cortex of the cat and its relation to discharge in primary afferent fibers from the sinus hair follicles. Proc. Physiol. Soc., 1974, 244, 73–74P.Google Scholar
  96. Gardner, E. P., and Spencer, W. A. Sensory funneling. II. Cortical neuronal representation of patterned cutaneous stimuli. J. Neurophysiol., 1972, 35, 954–977.Google Scholar
  97. Geldard, F. The perception of mechanical vibration. I. History of a controversy. J. Gen. Psychol., 1940, 22, 243–269.Google Scholar
  98. Ghez, C., and Pisa, M. Inhibition of afferent transmission in cuneate nucleus during voluntary movement in the cat. Brain Res., 1972, 40, 145–151.Google Scholar
  99. Gibson, J.J. Observations on active touch. Psychol. Rev., 1962, 69, 477–491.Google Scholar
  100. Gilman, S., and Denny-Brown, D. Disorders of movement and behavior following dorsal column lesions. Brain, 1966, 89, 397–418.Google Scholar
  101. Glassman, R. B. Cutaneous discrimination and motor control following somatosensory cortical ablations. Physiol. Behav., 1970, 5, 1009–1019.Google Scholar
  102. Glassman, R. B. Discrimination of passively received kinesthetic stimuli following sensorimotor cortical ablations in cats. Physiol. Behav., 1971, 7, 239–243.Google Scholar
  103. Glassman, R. B., Forgus, M. W., Goodman, J. E., and Glassman, H. N. Somesthetic effects ofdamage of eat’s ventrobasal complex, medial lemniscus or posterior group. Exp. Neurol., 1975, 48, 460–492.Google Scholar
  104. Glenndenning, K. K., Hall, J. A., Diamond, I. T., and Hall, W. C. The pulvinar nucleus of Galago senegalensis. J. Comp. Neurol., 1975, 161, 419–458.Google Scholar
  105. Goldberg, M. E., and Wurtz, R. H., Activity of superior colliculus in behaving monkey, II. Effect of attention on neuronal responses. J. Neurophysiol., 1972, 35, 560–574.Google Scholar
  106. Goodwin, G. M., McCloskey, D. I., and Mathews, P. B. C. The contribution of muscle afferents to kinesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain, 1972, 95, 705–748.Google Scholar
  107. Gordon, G. The concept of relay nuclei. In Handbook of Sensory Physiology, Vol. II. Springer-Verlag, Berlin, 1973, pp. 137–150.Google Scholar
  108. Gordon, G., and Horrobin, D., Antidromic and synaptic responses in the eat’s gracile nucleus to cerebellar stimulation. Brain Res., 1967, 5, 419–421.Google Scholar
  109. Gordon, G., and Jukes, M. G. M., Dual organization of the exteroceptive component of the eat’s gracile nucleus. J. Physiol. (London), 1964, 173, 263–290.Google Scholar
  110. Gordon, G., and Manson, J. R. Cutaneous receptive fields of single nerve cells in the thalamus of the cat. Nature (London), 1967, 215, 597–599.Google Scholar
  111. Gordon, G., and Seed, W. A., An investigation of nucleus gracilis of the cat by antidromic stimulation. J. Physiol., 1961, 155, 589–601.Google Scholar
  112. Gould, W. R. and Vierck, C. T., Jr. Cues supporting recognition orientation of ’tactile stimuli. Neuroscience Abst. 1976, 2936Google Scholar
  113. Granit, R. The Basis of Motor Control. Academic Press, New York, 1970.Google Scholar
  114. Ha, H. Cervicothalamic tract in the rhesus monkey. Exp. Neurol., 1971, 33, 205–212.Google Scholar
  115. Hagbarth, K.-E., Hongell, A., Hallin, R. G., and Torebjork, H. E. Afferent impulses in median nerve fascicles evoked by tactile stimuli of the human hand. Brain Res., 1970, 24, 423–442.Google Scholar
  116. Hancock, M. B., Foreman, R. D., and Willis, W. D. Convergence of visceral and cutaneous input onto spinothalamic tract cells in the thoracic spinal cord of the cat. Exp. Neurol., 1975, 47, 240–248.Google Scholar
  117. Hardy, J. D., and Oppel, T. W. Studies in temperature sensation. Ill. the sensitivity of the body to heat and the spatial summation of the end organ response. J. Clin. Invest., 1937, 16, 533–540.Google Scholar
  118. Harrington, T., and Merzenich, M. M., Neural coding of the sense of touch: Human sensations of skin indentation compared with the responses of slowly adapting mechanoreceptive afferents innervating the hairy skin of monkeys. Exp. Brain Res., 1970, 10, 251–264.Google Scholar
  119. Head, H. Studies in Neurology. Oxford, London, 1920.Google Scholar
  120. Heilman, K., Pandya, D. N., and Geschwind, N., Trimodal inattention following parietal lobe ablations. Trans. Am. Neurol. Assoc., 1970, 95, 259–261.Google Scholar
  121. Heinbecker, P., Bishop, G. H., and O’Leary, J. Pain and touch fibers in peripheral nerves. Arch. Neurol. Psychiat., 1933, 29, 771–789.Google Scholar
  122. Hensel, H. Cutaneous thermoreceptors. In Handbook ofSensory Physiology, Vol. II. Springer-Verlag, New York, 1973, pp. 79–110.Google Scholar
  123. Hensel, H., Iggo, A., and Witt, I., A quantitative study of sensitive thermoreceptors with C afferent fibers. J. Physiol., 1960, 153, 113–126.Google Scholar
  124. Hensel, H., Andres, K. H., and During, M. V., Structure and function of cold receptors. Pflugers Arch., 1974, 352, 1–10.Google Scholar
  125. Holmes, G., Cronnian lectures on the clinical symptoms of cerebellar disease. Lecture IV. Lancet, 1922, 2, 111–115.Google Scholar
  126. Horch, K. W., and Burgess, P. R. Effect of activation and adaptation on the sensitivity of slowly adapting cutaneous mechanoreceptors. Brain Res., 1975, 98, 109–118.Google Scholar
  127. Horch, K. W., Burgess, P. R., and Poulos, D. A. Temporal effects on magnitude sensations produced by skin indentation in humans. Neurosci. Abstr., 1975, 1, 122.Google Scholar
  128. Horrobin, D. F. The lateral cervical nucleus of the cat; an electrophysiological study. Q. J. Exp. Physiol., 1966, 51, 351–371.Google Scholar
  129. Hunt, C. C. On the nature of vibration receptors in the hind limb of the cat. J. Physiol. (London) 1961, 155, 175.Google Scholar
  130. Hunt, C. C. The Pacinian corpuscle. In J. I. Hubbard (ed.), The Peripheral Nervous System. Plenum, New York, 1974, pp. 405–420.Google Scholar
  131. Hunt, C. C., and McIntyre, A. K. An analysis of fibre diameter and receptor characteristics of myelinated cutaneous afferent fibres in cat. J. Physiol. (London), 1960, 153, 99–112.Google Scholar
  132. Hyvarinen, J., and Poranen, A. Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. Brain, 1974, 97, 673–692.Google Scholar
  133. Iggo, A. Gastric mucosal receptors with vagal afferent fibres in the cat. Q. J. Exp. Physiol., 1957, 42, 398–409.Google Scholar
  134. Iggo, A. Cutaneous heat and cold receptors with slowly conducting (C) afferent fibres. Q. J. Exp. Physiol., 1959, 44, 362–370.Google Scholar
  135. Iggo, A., Cutaneous mechanoreceptors with afferent C fibres. J. Physiol. (London), 1960, 152, 337–353.Google Scholar
  136. Iggo, A. Pain and pain receptors. In A. V. S. de Reuck and J. Knight (eds.), Touch, Heat and Pain. Little, Brown, Boston, 1966a, pp. 360–366.Google Scholar
  137. Iggo, A. Cutaneous receptors with a high sensitivity to mechanical displacement. In A. V. S. de Reuck and J. Knight (eds.), Touch, Heat and Pain. Little, Brown, Boston, 1966b, pp. 237–256.Google Scholar
  138. Iggo, A., Cutaneous receptors. In J. I. Hubbard (ed.), The Peripheral Nervous System. Plenum, New York, 1974, pp. 347–404.Google Scholar
  139. Iggo, A., and Muir, A. R. The structure and function of a slowly adapting touch corpuscle in hairy skin. J. Physiol. (London), 1969, 200, 763–796.Google Scholar
  140. Iggo, A., and Ogawa, H. Primate cutaneous thermal nociceptors. J. Physiol. (London), 1971, 2167, 778P.Google Scholar
  141. Iggo, A., and Young, D. W. Cutaneous thermoreceptors and thermal nociceptors. In H. H. Komhuber (ed.), The Somatosensory System. Georg Thieme, Stuttgart, 1975, pp. 5–22.Google Scholar
  142. Iniuchijima, J., and Zotterman, Y. The specificity of afferent cutaneous C fibres in mammals. Acta Physiol. Scand., 1960, 49, 267–273.Google Scholar
  143. Jabbur, S. J., and Atweh, S. I. Visual, auditory and somatic interactions in the cuneate nucleus. In H. H. Kornhuber (ed.), The Somatosensory System. Georg Thieme, Stuttgart, 1975, pp. 115–122.Google Scholar
  144. Jabbur, S. J., Baker, M. A., and Towe, A. L. Wide-field neurons in thalamic nucleus ventralis posterolateralis of the cat. Exp. Neurol., 1972, 36, 213–238.Google Scholar
  145. Janig, W. Morphology of rapidly and slowly adapting mechanoreceptors in the hairless skin of the eat’s hind foot. Brain Res., 1971, 28, 217–232.Google Scholar
  146. Jasper, H. H. et al. (eds.). The Reticular Formation of the Brain. Little, Brown, Boston, 1958.Google Scholar
  147. Jones, E. G., and Powell, T. P. S., Connections of the somatic sensory cortex of the rhesus monkey. I. Ipsilateral cortical connections. Brain, 1969a, 92, 504–531.Google Scholar
  148. Jones, E. G., and Powell, T. P. S., The cortical projection of the ventroposterior nucleus of the thalamus in the cat. Brain Res., 1969b, 13, 298–318.Google Scholar
  149. Jones, E. G., and Powell, T. P. S., Connections of the somatic sensory cortex of the rhesus monkey. III. Thalamic connections. Brain, 1970, 93, 37–56.Google Scholar
  150. Jones, E. G., and Powell, T. P. S. Anatomical organization of the somatosensory cortex. In Handbook of Sensory Physiology, Vol. 2. Springer-Verlag, Berlin, 1973, pp. 579–620.Google Scholar
  151. Keating, E. G. Impaired orientation after primate tectallesions. Brain Res., 1974, 67, 533–541.Google Scholar
  152. Keating, E. G., and Horel, J. A. Somatosensory deficit produced by parietal-temporal cortical disconnection in the monkey. Exp. Neurol., 1971, 33, 547–565.Google Scholar
  153. Keele, C. A., and Armstrong, D. Substances Producing Pain and Itch. Arnold, London, 1964.Google Scholar
  154. Kennard, M. A., The course of ascending fibers in the spinal cord of the cat essential to the recognition of painful stimuli. J. Compo Neurol., 1954, 100, 511–524.Google Scholar
  155. Kennard, M. A., and Kessler, M. M. Studies of motor performance after parietal ablations in monkeys. J. Neurophysiol., 1940, 3, 248–257.Google Scholar
  156. Kerr, F. W. L. The ventral spinothalamic tract and other ascending systems of the ventral funiculus of the spinal cord. J. Compo Neurol., 1975, 159, 335–356.Google Scholar
  157. Kerr, F. W. L., and Lippman, H. H. The primate spinothalamic tract as demonstrated by anterolateral cordotomy and commissural myelotomy. Adv. Neurol., 1974, 4, 147–156.Google Scholar
  158. King, R. B. Postchordotomy studies of pain threshold. Neurology, 1957, 7, 610–669.Google Scholar
  159. Kitai, S. T., and Weinberg, J. Tactile discrimination study of the dorsal column-medial lemniscal system and spino-cervico-thalamic tract in cat. Exp. Brain Res., 1968, 6, 234–246.Google Scholar
  160. Knapp, H. D., Taub, E., and Berman, A. J. Movements in monkeys with deafferented limbs. Exp. Neurol., 1963, 7, 305–315.Google Scholar
  161. Knibestol, M., and Vallbo, A. B. Single unit analysis of mechanoreceptor activity from the human glabrous skin. Acta Physiol. Scand., 1970, 80, 178–195.Google Scholar
  162. Korner, L., and Landgren, S. Projections of low threshold joint afferents to the cerebral cortex of the cat. ActaPhysiol. Scand., 1969, 76, 5A-7A.Google Scholar
  163. Kornhuber, H. H., Motor functions of cerebellum and basal ganglia: The cerebellocortical saccadic (ballistic) clock, the cerebellonuclear hold regulator, and the basal ganglia ramp (voluntary speed smooth movement) generator. Kybernetik, 1971, 8, 157–162.Google Scholar
  164. Kostyuk, P. G., and Skibo, G. G. Synaptic transmission of proprioceptive and cutaneous volleys through the Burdach nucleus. N eurosci. Transl., 1969, 6, 623–630.Google Scholar
  165. Kruger, L., and Kenton, B. Quantitative neural and psychophysical data for cutaneous mechanoreceptor function. Brain Res., 1973, 49, 1–24.Google Scholar
  166. Kruger, L., and Mosso, J. A. An evaluation of duality in the trigeminal afferent system. Adv. Neurol., 1974, 4, 73–82.Google Scholar
  167. Kruger, L., and Porter, P., A behavioral study of the functions of the rolandic cortex in the monkey. J. Compo Neurol., 1958, 109, 439–469.Google Scholar
  168. Kruger, L., Siminoff, R., and Witkovsky, P. Single neuron analysis of dorsal column nuclei and spinal nucleus of trigeminal in cat. J. Neurophysiol., 1961, 24, 333–349.Google Scholar
  169. Lamotte, R. H., and Acuna, C. Defects in accurate projection of the contralateral arm into extrapersonal space in monkeys after removal of the posterior parietal association cortex. Neurosci. Abstr., 1975, 1, 131.Google Scholar
  170. Lamotte, R. H., and Mountcastle, V. B. Capacities of humans and monkeys to discriminate between vibratory stimuli of different frequency and amplitude. J. Neurophysiol., 1975, 38, 539–559.Google Scholar
  171. Landgren, S., Silfvenius, H., and Wolsk, D., Somato-sensory paths to the second cortical projection areas of the group I muscle afferents. J. Physiol. (London), 1967, 191, 543–559.Google Scholar
  172. Lashley, K. S. The accuracy of movement in the absence of excitation from the moving organ. Am. J, Physiol., 1917, 43, 169–194.Google Scholar
  173. Laskin, S. E. Cortical correlates of cutaneous masking: A comparison of psychophysical and electrophysiological inhibitory functions. Doctoral dissertation, New York University, 1975.Google Scholar
  174. Lawrence, D. G., and Kuypers, H. G. J. M. The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain, 1968, 91, 1–14.Google Scholar
  175. Levitt, M., and Levitt, J. Sensory hind limb representation of Sm I cortex of the cat after spinal tractotomies. Exp. Neurol., 1968, 22, 276–302.Google Scholar
  176. Levitt, M., and Levitt, J., Limb position sense after Rolandic cortex ablations. Anat. Rec., 1969, 1632, 18.Google Scholar
  177. Levitt, J., and Levitt, M., Post central somatic mechanoreception. I. Dorsal column and anterolateral lesions. Proc. Soc. Neurosci., 1974a, 4, 306.Google Scholar
  178. Levitt, M., and Levitt, J. Post central somatic mechanoreception. II. Dorsal quadrant, hemisection and anterolateral lesions. Proc. Soc. Neurosci., 1974, 4307Google Scholar
  179. Levitt, M., and Schwartzman, R. J. Spinal sensory tracts and two-point tactile sensitivity. Anat. Rec., 1966, 154, 377.Google Scholar
  180. Lewis, T. Pain. Macmillan, New York, 1942.Google Scholar
  181. Lim, R. K. S. Pain. Annu. Rev. Physiol., 1970, 32, 269–288.Google Scholar
  182. Lindahl, O. Pain-a general chemical explanation. Adv. Neurol., 1974, 4, 45–48.Google Scholar
  183. Lindblom, V., Properties of touch receptors in distal glabrous skin of the monkey. J. Neurophysiol., 1965, 28, 966–985.Google Scholar
  184. Liu, C. N., Yu, J., Chambers, W. W., and Ha, H. The role of the mediallemniscal and spinocervicothalamic pathways on tactile reactions in cats. Acta Neurobiol. Exp. 1975, 35, 149–157.Google Scholar
  185. Livingston, W. K., Pain Mechanisms: A Physiologic Interpretation if Causalgia and Its Related States. Macmillan, New York 1943.Google Scholar
  186. Lloyd, A., and Caldwell, L. S. Accuracy of active and passive positioning of the leg on the basis of kinesthetic cues. J. Compo Physiol. Psychol., 1965, 60, 102–106.Google Scholar
  187. Long, R. R., Cold fiber heat sensitivity: Dependency of ‘paradoxical’ discharge on body temperature. Brain Res., 1973, 63, 389–392.Google Scholar
  188. Lundberg, A., and Oscarsson, O. Two ascending spinal pathways in the ventral part of the cord. Acta. Physiol. Scand., 1962, 51, 270–286.Google Scholar
  189. Lynn, B. The nature and location of certain phasic mechanoreceptors in the eat’s foot. J. Physiol. (London), 1969, 201, 765–773.Google Scholar
  190. Lynn, B. Somatosensory receptors and their CNS connections. Annu. Rev. Physiol., 1975, 37, 105–127.Google Scholar
  191. Malinovsky, L. Variability of sensory nerve endings in foot pads of a domestic cat. Acta. Anat., 1966, 64, 82–106.Google Scholar
  192. Mark, V. H., Ervin, F. R., and Yakolw, P. I., Stereotaxic thalamotomy. III. The verification of anatomical lesion sites in the human thalamus. Arch. Neurol., 1963, 8, 528–538.Google Scholar
  193. Martin, R. F., Applebaum, A. E., Forman, R. D., Beall, J. E., and Willis, W. D. Responses to cutaneous thermal stimulation of spinothalamic tract neurons in the monkey. Neurosci. Abstr., 1975, 1, 147.Google Scholar
  194. Mathews, P. B. Mammalian Muscle Receptors and Their Central Actions. Williams and Wilkins, Baltimore, 1972.Google Scholar
  195. Mayer, D. J., and Liebeskind, J. C., Pain reduction by focal electrical stimulation of the brain: An anatomical and behavioral analysis. Brain Res., 1974, 68, 73–93.Google Scholar
  196. Mehler, W. R. The mammalian "pain" tract in phylogeny. Anat. Rec., 1957, 1273, 32.Google Scholar
  197. Mehler, W. R. Some observations on secondary ascending afferent systems in the central nervous system. In R. S. Knighton and P. R. Dumke (eds.), Pain. Little, Brown, Boston, 1966, pp. 11–32.Google Scholar
  198. Mehler, W. R., Feferman, M. E., and Nauta, W. J. H. Ascending axon degeneration following anterolateral cordotomy: An experimental study in the monkey. Brain, 1960, 83, 718–750.Google Scholar
  199. Melzack, R. Prolonged relief of pain by brief, intense transcutaneous somatic stimulation. Pain, 1975, 1, 357–374.Google Scholar
  200. Melzack, R., and Bridges, J. A. Dorsal column contributions to motor behavior. Exp. Neurol., 1971, 33, 53–68.Google Scholar
  201. Melzack, R., and Southmayd, S. E. Dorsal column contributions to anticipatory motor behavior. Exp. Neurol., 1974, 42, 274–281.Google Scholar
  202. Melzack, R., and Torgerson, W. S., On the language of pain. Anesthesiology, 1971, 34, 50.Google Scholar
  203. Melzack, R., and Wall, P. D. On the nature of cutaneous sensory mechanisms. Brcin, 1962, 85, 331–356.Google Scholar
  204. Melzack, R., and Wall, P. D. Masking and metacontrast phenomena in the skin sensory system. Exp. Neurol., 1963, 8, 35–46.Google Scholar
  205. Melzack, R., and Wall, P. D. Pain mechanisms: A new theory. Science, 1965, 150, 971–979.Google Scholar
  206. Mendoza, J. E., and Thomas, R. K. Effects of posterior parietal and frontal neocrotical lesions in the squirrel monkey. J. Comp. Physiol Psychol., 1975, 89, 170–182.Google Scholar
  207. Merzenich, N. M., and Harrington, T. H. The sense of flutter-vibration evoked by stimulation of the hairy skin of primates: Comparison of human sensory capacity with the responses of mechanoreceptive afferents innervating the hairy skin of the monkeys. Exp. Brain Res., 1969, 9, 236.Google Scholar
  208. Mettler, F. A., and Liss, H. Functional recovery in primates after large subtotal spinal cord lesion. J. Neuropathol. Exp. Neurol., 1959, 18, 509–516.Google Scholar
  209. Millar, J. Joint afferent fibre responding to muscle stretch, vibration and contraction. Brain Res., 1973, 63, 380–383.Google Scholar
  210. Morin, F. A new spinal pathway for tactile impulses. Am. J. Physiol., 1955, 183, 245–252.Google Scholar
  211. Mountcastle, V. B. Some functional properties of the somatic afferent system. In W. A. Rosenblith (ed.), Sensory Communication. Wiley, New York, 1961.Google Scholar
  212. Mountcastle, V. B., Poggio, G. F., and Werner, G. The relation of thalamic cell response to peripheral stimuli varied over an intensive continuum. J. Neurophysiol., 1963, 26, 807–834.Google Scholar
  213. Mountcastle, V. B., Talbot, W. H., and Kornhuber, H. H. The neural transformation of mechanical stimuli delivered to the monkey’s hand. In A. de Reuck and J. Knight (eds), Touch, Heat and Pain. Little, Brown, Boston, 1966, pp. 325–345.Google Scholar
  214. Mountcastle, V. B., Talbot, W. H., Sakata, H., and Hyvarinen, J., Cortical neuronal mechanisms in flutter-vibration studied in unanesthetized monkeys. Neuronal periodicity and frequency discrimination. J. Neurophysiol., 1969, 32, 452–484.Google Scholar
  215. Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., Sakata, H., and Acuna, C., Posterior parietal association cortex of the monkey: Command functions for operations within extrapersonal space. J. Neurophysiol., 1975, 38, 871–908.Google Scholar
  216. Munger, B. L. The intraepidermal innervation of the snout skin of the opposum: A light and electron microscope study, with observations on the nature of Merkel’s Tastzellen. J. Cell Biol., 1965, 26, 79.Google Scholar
  217. Munger, B. L. Patterns of organization of peripheral sensory receptors. In Handbook of Sensory Physiology, Vol. 1. Springer-Verlag, New York, 1971, pp. 524–553.Google Scholar
  218. Myers, D. A., Hostetter, G., Bourassa, C. M., and Swett, J. E. Dorsal columns in sensory detection. Brain Res., 1974, 70, 350–355.Google Scholar
  219. Naquet, R., Denevit, M., and Albe-Fessard, D., Comparaison entre le role du subthalamus et celui des afferents structures bulbomesencephaliques dans le maintien de la vigilance. Electroencephalogr. Clin. Neurophysiol., 1966, 20, 149–164.Google Scholar
  220. Norrsell, U. The spinal afferent pathways of conditioned reflexes to cutaneous stimuli in the dog. Exp. Brain Res., 1966, 2, 269–282.Google Scholar
  221. Norrsell, V., A conditioned reflex study of sensory defects caused by cortical somatosensory ablations. Physiol. Behav., 1967, 2, 73–81.Google Scholar
  222. Norton, A. C., and Kruger, L. The Dorsal Column System of the Spinal Cord: An Updated Review. Brain Information Service, Los Angeles, Calif., 1973.Google Scholar
  223. Orbach, J., and Chow, K. L. Differential effects of resections of somatic areas I and II in monkeys. J. Neurophysiol., 1959, 22, 195–203.Google Scholar
  224. Oscarsson, O., and Rosen, I. Projection to cerebral cortex of large muscle spindle afferents in forelimb nerves of the cat. J. Physiol. (London), 1963, 169, 924–945.Google Scholar
  225. Pagni, C. A. Pain due to central nervous system lesions: Physiopathological considerations and therapeutical implications. Adv. Neurol., 1974, 4, 339–348.Google Scholar
  226. Paillard, J., and Brouchon, M. Active and passive movements in the calibration of position sense. In S.J. Freedman (ed.), The Neuropsychology ofSpatially Oriented Behavior. Dorsey Press, Honeward, Ill., 1968.Google Scholar
  227. Paintal, A. S., Functional analysis of group III afferent fibres of mammalian muscles. J. Physiol., 1960, 152, 250–270.Google Scholar
  228. Paul, R. L., Merzenich, M., and Goodman, H. Representation of slowly and rapidly adapting cutaneous mechanoreceptors of the hand in Brodman’s areas 3 and 1 of Macaca mulatta. Brain Res., 1572, 36, 229–249.Google Scholar
  229. Perl, E. R. Myelinated afferent fibers innervating the primate skin and their response to noxious stimuli. J. Physiol. (London), 1968, 197, 593.Google Scholar
  230. Perl, E. R., Whitlock, D. G., and Gentry, J. R. Cutaneous projection to second-order neurons of the dorsal column system. J. Neurophysiol., 1962, 25, 337–358.Google Scholar
  231. Petit, D., and Burgess, P. R. Dorsal column projection of receptors in cat hairy skin supplied by myelinated fibers. J. Neurophysiol., 1968, 31, 849–855.Google Scholar
  232. Phillips, C. G., Powell, T. P. S., and Wiesendanger, M. Projection from low-threshold muscle afferents of hand and forearm to area 3a of baboon’s cortex. J. Physiol. (London), 1971, 217, 419–446.Google Scholar
  233. Poggio, G. F., and Mountcastle, V. B. A study of the functional contributions of the lemniscal and spinothalamic systems to somatic sensibility: Central nervous mechanisms in pain. Bull. Johns Hopkins Hosp., 1960, 25, 337–358.Google Scholar
  234. Poggio, G. F., and Mountcastle, V. B. The functional properties of ventrobasal thalamic neurons studied in unanesthetized monkeys. J. Neurophysiol., 1963, 26, 775–806.Google Scholar
  235. Pohl, W. Dissociation of spatial discrimination deficits following frontal and parietal lesions in monkeys. J. Compo Physiol. Psychol., 1973, 82, 227–239.Google Scholar
  236. Pompeiano, O. Reticular formation. In Handbook ofSensory Physiology, Vol. II. Springer-Verlag, New York, 1973, pp. 381–488.Google Scholar
  237. Poulos, D. A. Central processing of peripheral temperature information. In H. H. Kornhuber (ed.), The Somatosensory System. Georg Thieme, Stuttgart, 1975, pp. 78–93.Google Scholar
  238. Powell, T. P. S., and Mountcastle, V. B. Some aspects of the functional organization of the cortex of the post central gyrus of the monkey: A correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull. Johns Hopkins Hosp., 1959, 105, 133–162.Google Scholar
  239. Pribram, H. B., and Barry, J. Further behavioral analysis of parieto-temporo-preoccipital cortex. J. Neurophysiol., 1956, 19, 99–106.Google Scholar
  240. Rethelyi, M., and Szentagothai, J. Distribution and connections of afferent fibres in the spinal cord. In Handbook of Sensory Physiology, Vol. 2. Springer-Verlag, New York, 1973, pp. 207–253.Google Scholar
  241. Reynolds, P. J., Talbot, R. E., and Brookhart, J. M., Control of postural reactions in the dog: The role of the dorsal column feedback pathway. Brain Res., 1972, 40, 159–164.Google Scholar
  242. Ridley, R. M., and Ettlinger, G., Tactile and visuo-spatial discrimination performance in the monkey: The effects of total and partial posterior parietal removals. Neuropsychologia, 1975, 13, 191–206.Google Scholar
  243. Rose, J. E., and Mountcastle, V. B., Touch and kinesthesis. In Handbook of Physiology, Section I: Neurophysiology. 1959, 387–429.Google Scholar
  244. Rosen, I., Functional organization of group I activated neurons in the cuneate nucleus of the cat. Brain Res., 1967, 6, 770–772.Google Scholar
  245. Rosenthal, S. R., Histamine as the chemical mediator for referred pain. In D. R. Kenshalo (ed.), The Skin Senses. Thomas, Springfield, Ill., 1968, pp. 480–498.Google Scholar
  246. Ruch, T. C., Pathophysiology of pain. In T. C. Ruch, H. D. Patton, J. W. Woodbuury, and A. L. Towe (eds.), Neurophysiology. Saunders, Philadelphia, 1961, 350–368.Google Scholar
  247. Ruch, T. C., and Fulton, J. F., Cortical localization of somatic sensibility; the effect of precentral, postcentral and posterior parietal lesions upon the performance of monkeys trained to discriminate weights. Res. Publ. Assoc. Nerv. Ment. Dis., 1935, 15, 289–330.Google Scholar
  248. Rustioni, A., Non-primary afferents to the nucleus gracilis from the lumbar cord of the cat. Brain Res., 1973, 51, 81–95.Google Scholar
  249. Rustioni, A., Non-primary afferents to the cuneate nucleus in the brachial dorsal funiculus of the cat. Brain Res., 1974, 75, 247–259.Google Scholar
  250. Ryall, R. W., and Piercey, M. F., Visceral afferent and efferent fibers in sacral ventral roots in cats. Brain Res., 1970, 23, 57–65.Google Scholar
  251. Sakata, H., Takaoka, Y., Kawarasaki, A., and Shibutani, H. Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res., 1973, 64, 85–102.Google Scholar
  252. Sanwald, J. C., and Vierck, C.J., Jr. The afferent spinal pathways mediating light tactile sensation. Proc. Int. Un. Physiol. Sci., 1968, 7, 385.Google Scholar
  253. Schwartz, A. S., Eidelberg, E., Marchok, P., and Azulay, A. Tactile discrimination in the monkey after section of the dorsal funiculus and lateral lemniscus. Exp. Neurol., 1972, 37, 582–596.Google Scholar
  254. Schwartz, A. S., Perey, A. J., and Azulay, A. Further analysis of active and passive touch in pattern discrimination. In preparation, 1977.Google Scholar
  255. Schwartzman, R. J. Somatesthetic recovery following primary somatosensory cortex ablations. Arch. Neurol., 1972, 27, 340–349.Google Scholar
  256. Schwartzman, R. J., and Bogdonoff, M. D. Behavioral and anatomical analysis of vibration sensitivity. Exp. Neurol., 1968, 20, 43–51.Google Scholar
  257. Schwartzman, R. J., and Bogdonoff, M. D., Proprioception and vibration sensibility discrimination in the absence of the posterior columns. Arch. Neurol., 1969, 20, 349–353.Google Scholar
  258. Schwartzman, R. J., and Semmes, J. The sensory cortex and tactile sensitivity. Exp. Neurol., 1971, 33, 147–158.Google Scholar
  259. Selzer, M., and Spencer, W. A. Convergence of visceral and cutaneous afferent pathways in the lumbar spinal cord. Brain Res., 1969, 14, 331–348.Google Scholar
  260. Semmes, J. Protopathic and epicritic sensation: A reappraisal. In A. L. Benton (ed.), Contributions to Clinical Neuropsychology. Aidine, Chicago, 1969, pp. 142–171.Google Scholar
  261. Semmes, J. Somesthetic effects of damage to the central nervous system. In Handbook of Sensory Physiology, Vol. 2. Springer-Verlag, New York, 1973, pp. 719–742.Google Scholar
  262. Semmes, J., and Porter, L. A comparison of precentral and postcentral cortical lesions on somatosensory discrimination in the monkey. Cortex, 1972, 8, 249–264.Google Scholar
  263. Semmes, J., Porter, L., and Randolph, M. C. Further studies of anterior postcentral lesions in monkeys. Cortex, 1974, 10, 55–68.Google Scholar
  264. Sheally, C. N. Six year’s experience with electrical stimulation for control of pain. Adv. Neurol., 1974, 4, 775–782.Google Scholar
  265. Sicuteri, F., Franchi, G., and Michelacci, S. Biochemical mechanisms of ischemic pain. Adv. Neurol., 1974, 4, 39–44.Google Scholar
  266. Sjoqvist, O., and Weinstein, E. A. The effect of section of the medial lemniscus on proprioceptive functions in chimpanzees and monkeys. J. Neurophysiol., 1942, 5, 69–74.Google Scholar
  267. Skavenski, A. A. Inflow as a source of extraretinal eye position information. Vision Res., 1971, 1222, 1229.Google Scholar
  268. Skoglund, S. Anatomical and physiological studies of knee joint innervation in the cat. Acta Physiol. Scand., 1956, 36, Suppl. 124.Google Scholar
  269. Skoglund, S. Joint receptors and kinesthesis. In Handbook of Sensory Physiology, Vol. 2. Springer-Verlag, New York, 1973, pp. 111–136.Google Scholar
  270. Sprague, J. M., and Meikle, T. H. The role of the superior colliculus in visually guided behavior. Exp. Neurol., 1965, 11, 115–146.Google Scholar
  271. Sprague, J. M., Levitt, M., Robson, K., Liu, C. N., Stellar, E., and Chambers, W. W., A neuroanatomical and behavioral analysis of the syndromes resulting from midbrain lemniscal and reticular lesions in the cat. Arch. Ita I. Biol., 1963, 101, 225–295.Google Scholar
  272. Stein, B. E., Magalhaes-Castro, B., and Kruger, L. Relation between visual and somatic organization in the cat superior colliculus. Soc. Neurosci. Abstr. 1974, 4, 436.Google Scholar
  273. Straile, W. E., Sensory hair follicles in mammalian skin: The tylotrich follicle. Am. J. Anat., 1960, 106,133-147. Google Scholar
  274. Sullivan, R. Effect of different frequencies of virbation on pain threshold detection. Exp. Neurol., 1968, 20, 135–142.Google Scholar
  275. Sumino, R., Dubner, R., and Starkman, S. Responses of small myelinated "warm" fibers to noxious heat stimuli applied to the monkey’s face. Brain Res., 1973, 62, 260–263.Google Scholar
  276. Swett, J. E., and Bourassa, C. M. Comparison of sensory discrimination thresholds with muscle and cutaneous nerve volleys in the cat. J. Neurophysiol., 1967, 30, 530–545.Google Scholar
  277. Talbot, W. H., Darian-Smith, I., Kornhuber, H. H., and Mountcastle, V. B., The sense of fluttervibration: Comparison of the human capacity with response patterns of mechanoreceptive afferents from the monkey hand. J. Neurophysiol., 1968, 31, 301–334.Google Scholar
  278. Tapper, D. M. Cutaneous slowly adapting mechanoreceptors in the cat. Science, 1964, 143, 53–54.Google Scholar
  279. Tapper, D. M. Behavioral evaluation of the tactile pad receptor system in hairy skin of the cat. Exp. Neurol., 1970, 26, 447–459.Google Scholar
  280. Tatton, W. G., Forner, S. D., Gerstein, G. L., Chambers, W. W., and Liu, C. N. The effect of post central cortical lesions on motor responses to sudden limb displacements in monkeys. Brain Res., 1975, 96, 108–113.Google Scholar
  281. Taub, A. Local, Segmental and supraspinal interactions with a dorsolateral spinal cutaneous afferent system. Exp. Neurol., 1964, 10, 357–374.Google Scholar
  282. Teitelbaum, H., Sharphos, S. K., and Byck, R. Role of somatosensory cortex on interhemispheric transfer of tactile habits. J. Comp. Physiol. Psychol., 1968, 66, 623–632.Google Scholar
  283. Thach, W. T. Timing of activity in cerebellar dentate nucleus and cerebral motor cortex during prompt volitional movement. Brain Res., 1975, 88, 233–241.Google Scholar
  284. Torebjrök, H. E., and Hallin, R. G. Identification of afferent C fibers in intact skin nerves. Brain Res., 1974, 67, 387–403.Google Scholar
  285. Towe, A. L. Somatosensory cortex: Descending influences on ascending systems. In Handbook of Sensory Physiology, Vol. 2. Springer-Verlag, New York, 1973, pp. 315–338.Google Scholar
  286. Truex, R. C., Taylor, M. J., Smythe, M. Q., and Gildenberg, P. L. The lateral cervical nucleus of cat, dog, and man. J. Comp. Neurol., 1970, 139, 93–104.Google Scholar
  287. Uddenberg, N. Functional organization of long, second order afferents in the dorsal funiculus. Exp. Brain Res., 1968, 4, 377–382.Google Scholar
  288. Vance, W. H., Clifton, G. L., Coggeshall, R. E., and Willis, W. D., Jr., Receptive field properties of unmyelinated ventral root afferents. Fed. Proc., 1975, 34, 388.Google Scholar
  289. Verrillo, R. T., Vebrotactile sensitivity and the frequency response of the Pacinian corpuscle. Psychon. Sci., 1966, 4, 135–136.Google Scholar
  290. Vierck, C. J., Jr. Spinal pathways mediating limb position sense. Anat. Rec., 1966, 154, 437.Google Scholar
  291. Vierck, C. J., Jr. Alterations of spatio-tactile discrimination after lesions of primate spinal cord. Brain Res., 1973, 58, 69–79.Google Scholar
  292. Vierck, C. J., Jr. Tactile movement detection and discriminating following dorsal column lesions in monkeys. Exp. Brain Res., 1974, 20, 331–346.Google Scholar
  293. Vierck, C. J., Jr. Proprioceptive deficits after dorsal column lesions in monkeys. In H. H. Kornhuber (ed.), The Somatosensory System. Georg Thieme, Stuttgart, 1975, pp. 311–318.Google Scholar
  294. Vierck, C. J., Jr. Absolute and differential sensitivities to touch stimuli after spinal cord lesions in monkeys. Brain Res., 1977, 134, 529–539.Google Scholar
  295. Vierck, C. J., Jr., and Jones, M. B. Size discrimination on the skin. Science, 1969, 158, 488–489.Google Scholar
  296. Vierck, C. J., Jr., and Jones, M. B. Influences of low and high frequency oscillation upon spatio-tactile resolution. Physiol. Behav., 1970, 5, 1431–1435.Google Scholar
  297. Vierck, C. J., Jr., Hamilton, D. M., and Thornby, J. I., Pain reactivity of monkeys after lesions to the dorsal and lateral columns of the spinal cord. Exp. Brain Res., 1971, 13, 140–158.Google Scholar
  298. Vierck, C. J., Jr., Lineberry, C. G., Lee, P. K., and Calderwood, H. W. Prolonged hypalgesia following "acupuncture" in monkeys. Life Sci., 1974, 1277–1289.Google Scholar
  299. von Bekesy, G. Sensory Inhibition. Princeton University Press, Princeton, N.J., 1967.Google Scholar
  300. Vyklicky, L., Rudomin, P., Zajac, F. E., III, and Burke, R. E. Primary afferent depolarization evoked by a painful stimulus. Science, 1969, 165, 184–186.Google Scholar
  301. Wagman, I. H., and Price, D. D. Responses of dorsal horn cells of M. mulatta to cutaneous and sural nerve A and C fiber stimuli. J. Neurophysiol., 1969, 32, 803–817.Google Scholar
  302. Wall, P. D. The origin of a spinal cord slow potential. J. Physiol. (London), 1962, 164, 508–526.Google Scholar
  303. Wall, P. D. The sensory and motor role of impulses traveling in the dorsal columns towards cerebral cortex. Brain, 1970, 93, 505–524.Google Scholar
  304. Weddell, G., Palmer, E., and Pallie, W., Nerve endings in mammalian skin. Biol. Rev., 1954, 30, 159-193.Google Scholar
  305. Weinstein, S. Intensive and extensive aspects of tactile sensitivity as a function of body part, sex and laterality. In D. Kenshalo (ed.), The Skin Senses. Thomas, Springfield, Ill., 1968, pp. 195–222.Google Scholar
  306. Werner, G., and Mountcastle, V. B. Neural activity in mechanoreceptive cutaneous afferents: Stimulusresponse relations, Weber functions, and information transmission. J. Neurophysiol., 1965, 28, 359–397.Google Scholar
  307. Werner, G., and Whitsel, B. L. Topology of the body representation in somatosensory area I of primates. J. Neurophysiol., 1968, 31, 856–869.Google Scholar
  308. Werner, G., and Whitsel, B. L. Functional organization of the somatosensory cortex. In Handbook of Sensory Physiology, Vol. 2. Springer-Verlag, New York, 1973, pp. 579–620.Google Scholar
  309. White, J. C., and Sweet, W. H. Pain and the Neurosurgeon. Thomas, Springfield, Ill., 1969.Google Scholar
  310. Whitsel, B. L., Petrucelli, L. M., and Sapiro, G. Modality representation in the lumbar and cervical fasciculus gracilis of squirrel monkey. Brain Res., 1969a, 15, 67–78.Google Scholar
  311. Whitsel, B. L., Petrucelli, L. M., and Werner, G. Symmetry and connectivity in the map of the body surface in somatosensory area II of primates. J. Neurophysiol., 1969b, 32, 170–183.Google Scholar
  312. Whitsel, B. L., Roppolo, J. R., and Werner, G. Cortical information processing of stimulus motion on the skin.J. Neurophysiol., 1973, 35, 691–717.Google Scholar
  313. Whitsel, B. L., Schreiner, R. C., and Essick, G. K. Analysis of variability in somatosensory cortical neuron discharge. In preparation, 1978.Google Scholar
  314. Williams, W. J., BeMent, S. L., Yim, T. C. T., and McCall, W. D., Jr. Nucleus gracilis responses to knee joint motion; a frequency response study. Brain Res., 1973, 64, 123–140.Google Scholar
  315. Willis, W. D., Maunz, R. A., Foreman, R. D., and Coultier, J. D. Static and dynamic responses of spinothalamic tract neurons to mechanical stimuli. J. Neurophysiol., 1975, 38, 587–600.Google Scholar
  316. Willis, W. W., Trevino, D. L., Coultier, J. D., and Maunz, R. A. Responses of primate spinothalamic tract neurons to natural stimulation of hindlimb. J. Neurophysiol., 1974, 37, 358–372.Google Scholar
  317. Wilson, M. Tactual discrimination learning in monkeys. N europsychologia, 1965, 3, 353–361.Google Scholar
  318. Wilson, M., Diamond, I. T., Ravissa, R. J., and Glendenning, K. K. A behavioral analysis of middle temporal and ventral temporal cortex in the bushbaby (Galago senegaleusis) Neursci. Abstr., 1975, 1, 73.Google Scholar
  319. Yamamoto, S., and Miyajima, M., Unit discharges recorded from dorsal portion of medulla responding to adequate exteroreceptive and proprioceptive stimulation in cats. Jap. J. Physiol., 1961, 11, 619–626.Google Scholar
  320. Zimmerman, M. Drosal root potentials after C-fiber stimulation. Science, 1968, 160, 896–898.Google Scholar
  321. Zotterman, Y. Touch, pain and tickling: An electrophysiological investigation on cutaneous sensory nerves. J. Physiol. (London), 1939, 95, 1–28.Google Scholar
  322. Zubeck, J. P., Studies in somesthesis. II. Role of somatic sensory areas I and II in roughness discrimination in cat. J. Neurophysiol., 1952, 15, 401–408.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • C. Vierck
    • 1
  1. 1.Department of NeuroscienceUniversity of Florida College of MedicineGainesvilleUSA

Personalised recommendations