Advertisement

Visual System: Pulvinar-Extrastriate Cortex

  • Martha Wilson

Abstract

Until a few decades ago, it was commonly believed that there is one primary projection from each peripheral receptor system to the cortex. Cortex which was not accounted for by these sensory areas, and which was not identifiable as motor cortex, was defined as association cortex. This view of cortical organization was agreeable for a number of reasons. It accounted for the minimal effects on sensory function of removing various portions of association cortex, it was consistent with the Empiricists’ notions of how percepts are achieved by combination of elements of experience, and it fit equally well with the Behaviorists’ insistence that learning consists of associations between stimuli and responses.

Keywords

Rhesus Monkey Superior Colliculus Squirrel Monkey Striate Cortex Superior Temporal Sulcus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allman, J. M. Representation of the visual field on the medial wall of occipital-parietal cortex in the owl monkey. Science, 1976, 191, 572–575.Google Scholar
  2. Allman, J. M., and Kaas, J. H. A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Res., 1971, 35 85–105.Google Scholar
  3. Allman, J. M., and Kaas, J. H. The organization of the second visual area (V 11) in the owl monkey: A second order transformation of the visual hemifield. Brain Res., 1974a, 76, 247–265.Google Scholar
  4. Allman, J. M., and Kaas, J. H. A cresent-shaped cortical visual area surrounding the middle temporal area (MT) of association cortex in the owl monkey, Aotus trivirgatus. Brain Res., 1974b, 81, 199–213.Google Scholar
  5. Allman, J. M., and Kaas, J. H. The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkey (Aotus trivirgatus). Brain Res., 1975, 100, 473–487.Google Scholar
  6. Allman, J. M., Kaas, J. H., Lane, R. H., and Miezin, F. M. A representation of the visual field in the inferior pulvinar nucleus in the owl monkey (Aotus trivirgatus). Brain Res., 1972, 40, 291–302.Google Scholar
  7. Allman, J. M., Kaas, J. H., and Lane, R. H. The middle temporal visual area (MT) in the bushbaby, Galago senegalensis. Brain Res., 1973, 57, 197–202.Google Scholar
  8. Atencio, F. W., Diamond, L T., and Ward, J. P. Behavioral study of the visual cortex of Galago senegalensis. J. Comp. Physiol. Psychol, 1975, 89, 1109–1135.Google Scholar
  9. Bagshaw, M. H., Mackworth, N. H., and Pribram, K. H. The effect of resections of the inferotemporal cortex or the amygdala on visual orienting and habituation. Neuropsychologia, 1972, 10, 153–162.Google Scholar
  10. Bates, J. A. V., and Ettlinger, G. Posterior biparietal ablations in the monkey. AMA Arch. Neurol, 1960, 3, 177–192.Google Scholar
  11. Bender, D. B. Visual sensitivity following inferotemporal and foveal prestriate lesions in the rhesus monkey. J. Comp. Physiol Psychol, 1973, 84, 613–621.Google Scholar
  12. Benevento, L. A., and Fallon, J. H. The ascending projections of the superior colliculus in the rhesus monkey. J. Comp. Neurol 1975, 160, 339–362.Google Scholar
  13. Benevento, L. A., and Rezak, M. The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (Macaca mulatta): An autoradiographic study. Brain Res., 1976, 108, 1–24.Google Scholar
  14. Blake, L., Jarvis, C., and Mishkin, M. Pattern discrimination deficits after partial inferior temporal or striate lesions in monkeys. Brain Res., 1977, 120, 209–220.Google Scholar
  15. Bonin, G. von, and Bailey, P. The Neocortex of Macaca Mulatta. University of Illinois Press, Urbana, Ill., 1947.Google Scholar
  16. Bonin, G. von, and Bailey, P. The Isocortex of the Chimpanzee. University of Illinois Press, Urbana, Ill., 1950.Google Scholar
  17. Brodmann, K. Beitrage zur histologischen Lokalisation der Grosshimrinde IIIte Mitteilung: Die Rindenfelder der neideren Affen. J. Psychol Neurol, 1905, 4, 177–226.Google Scholar
  18. Butter, C. M. The effect of discrimination training on pattern equivalence in monkeys with inferotemporal and lateral striate lesions. Neuropsychologia, 1968, 6, 27–40.Google Scholar
  19. Butter, C. M. Impairments in selective attention to visual stimuli in monkeys with inferotemporal and lateral striate lesions. Brain Res., 1969, 12, 374–383.Google Scholar
  20. Butter, C. M. Detection of masked patterns in monkeys with inferotemporal, striate or dorsolateral frontal lesions. Neuropsychologia, 1972, 10, 241–243.Google Scholar
  21. Butter, C. M. Effect of superior colliculus, striate, and prestriate lesions on visual sampling in rhesus monkeys. J. Comp. Physiol Psychol, 1974a, 87, 905–917.Google Scholar
  22. Butter, C. M. Visual discrimination impairments in rhesus monkeys with combined lesions of superior colliculus and striate cortex. J. Comp. Physiol Psychol, 1974b, 87, 918–929.Google Scholar
  23. Butter, C. M., and Doehrman, S. R. Size discrimination and transposition in monkeys with striate and temporal lesions. Cortex, 1968, 4, 35–46.Google Scholar
  24. Butter, C. M., and Hirtzel, M. Impairment in sampling visual stimuli in monkeys with inferotemporal lesions. Physiol Behav., 1970, 5, 369–370.Google Scholar
  25. Butter, C. M., Mishkin, M., and Rosvold, H. E. Stimulus generalization following inferotemporal and lateral striate lesions in monkeys. In D. Mostofsky (ed.), Stimulus Generalization. Stanford University Press, Stanford, Calif., 1965, pp. 119–133.Google Scholar
  26. Campos-Ortega, J. A. Descending subcortical projections from the occipital lobe of Galago crassicaudatus. Exp. Neurol, 1968, 21, 440–454.Google Scholar
  27. Campos-Ortega, J. A., Hayhow, W. R., and Clüver, P. F. deV. A note on the problem of retinal projections to the inferior pulvinar nucleus of primates. Brain Res., 1970a, 22, 126–130.Google Scholar
  28. Campos-Ortega, J. A., Haybow, W. R., and Clüver, P. F. deV. The descending projections from the cortical visual fields of Macaca mulatta with particular reference to the question of a cortico-lateral geniculate pathway. Brain Behav. Evol, 1970b, 3, 368–414.Google Scholar
  29. Chow, K. L. A retrograde degeneration study of the cortical projection field of the pulvinar in the monkey. J. Comp. Neurol, 1950, 93, 313–340.Google Scholar
  30. Chow, K. L. Anatomical and electrographical analysis of temporal neocortex in relation to visual discrimination learning in monkey. In J. F. Delafresnaye (ed.), Brain Mechanisms and Learning. Thomas, Springfield, Ill., 1961, pp. 507–525.Google Scholar
  31. Cowey, A. Projection of the retina on the striate and prestriate cortex in the squirrel monkey, Saimiri sciureus. J. Neurophysiol, 1964, 27, 366–393.Google Scholar
  32. Cowey, A., and Gross, C. G. Effects of foveal prestriate and inferotemporal lesions on visual discriminations by rhesus monkeys. Exp. Brain Res., 1970, 11, 128–144.Google Scholar
  33. Cragg, B. G. The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. Vision Res., 1969, 9, 733–757.Google Scholar
  34. Diamond, I. T. Organization of the visual cortex: Comparative anatomical and behavioral studies. Fed. Proc., 1976, 55, 60–67.Google Scholar
  35. Doty, R. W., Kimura, D. S., and Mogenson, G. J. Photically and electrically elicited responses in the central visual system of the squirrel monkey. Exp. Neurol., 1964, 10, 19–51.Google Scholar
  36. Dubner, R., and Zeki, S. M. Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Res., 1971, 55, 528–532.Google Scholar
  37. Ettlinger, G., Iwai, E., Mishkin, M., and Rosvold, H. E. Visual discrimination in the monkey following serial ablation of inferotemporal and preoccipital cortex. J. Comp. Physiol. Psychol, 1968, 65, 110–117.Google Scholar
  38. Ettiinger, G. Visual discrimination following successive temporal ablations in monkeys. Brain, 1959, 82, 232–250.Google Scholar
  39. Gerstein, G. L., Gross, C. G., and Weinstein, M. Inferotemporal evoked potentials during discrimination performance by monkeys. J. Comp. Physiol. Psychol, 1968, 65, 526–528.Google Scholar
  40. Glendenning, K. K., Hall, J. A., Diamond, I. T., and Hall, W. C. The pulvinar nucleus of Galago senegalensis. J. Comp. Neurol, 1975, 161, 419–458.Google Scholar
  41. Goldrich, S. G., Pond, F. J., Livesey, P., and Schwartzbaum, J. S. Electrically-induced afterdischarges in the inferotemporal cortex of monkeys: Effects on visual discrimination and discrimination- reversal performance. Neuropsychologia, 1970, 8, 417–430.Google Scholar
  42. Gross, C. G. Visual functions of inferotemporal cortex. In R. Jung (ed.), Handbook of Sensory Physiology, Vol. 7, Part 3. Springer-Verlag, Berlin, 1972, pp. 451–482.Google Scholar
  43. Gross, C. G. Inferotemporal cortex and vision. In E. Stellar and J. M. Sprague (eds.). Progress in Physiological Psychology, Vol. 5. Academic Press, New York, 1973, pp. 77–123.Google Scholar
  44. Gross, C. G., Schiller, P. H., Wells, C., and Gerstein, G. L. Single unit activity in temporal association cortex of the monkey. J. Neurophysiol, 1967, 50, 833–843.Google Scholar
  45. Gross, C. G., Rocha-Miranda, C. E., and Bender, D. B. Visual properties of neurons in inferotemporal cortex of the macaque. J. Neurophysiol, 1972, 55, 96–111.Google Scholar
  46. Gross, C. G., Cowey, A., and Manning, F.J. Further analysis of visual discrimination deficits following foveal prestriate and inferotemporal lesions in rhesus monkeys. J. Comp. Physiol Psychol, 1971, 76, 1–7.Google Scholar
  47. Gross, C. G., Bender, D. B., and Rocha-Miranda, C. E. Inferotemporal cortex: A single unit analysis. In F. O. Schmitt and F. G. Worden (eds.). The Neurosciences: A Third Study Program. MIT Press, Cambridge, Mass., 1973, pp. 229–238.Google Scholar
  48. Harting, J. K., and Casagrande, V. A. Afferent connections of the pulvinar nucleus in the tree shrew. Neurosci. Abstr., 1974, 248.Google Scholar
  49. Harting, J. K., Hall, W. C., and Diamond, I. T. Evolution of the pulvinar. Brain Behav. Evol, 1972, 6, 424–452.Google Scholar
  50. Harting, J. K., Diamond, I. T., and Hall, W. C. Anterograde degeneration study of the cortical projections of the lateral geniculate and pulvinar nuclei in the tree shrew (Tupaia glis). J. Comp. Neurol, 1973, 150, 393–440.Google Scholar
  51. Held, R. Two modes of processing spatially distributed information. In F. O. Schmitt (ed.), The Neurosciences: Second Study Program. Rockefeller University Press, New York, 1970, pp. 317–324.Google Scholar
  52. Helson, H. Adaptation-level theory. Harper and Row, New York, 1964.Google Scholar
  53. Hilgard, E. R., and Bower, G. H. Theories of Learning, 4th ed. Prentice-Hall, Englewood Cliffs, N.J., 1975.Google Scholar
  54. Hubel, D. H., and Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol, (London), 1968, 195, 215–243.Google Scholar
  55. Hubel, D. H., and Wiesel, T. N. Cells sensitive to binocular depth in area 18 of the macaque monkey cortex. Nature, 1970, 225, 41–42.Google Scholar
  56. Humphrey, N. K. Vision in a monkey without striate cortex: A case study. Perception, 1974, 5, 241–255.Google Scholar
  57. Iversen, S. D. Interference and inferotemporal memory deficits. Brain Res., 1970, 19, 277–289.Google Scholar
  58. Iversen, S. D. Visual discrimination deficits associated with posterior inferotemporal lesions in the monkey. Brain Res., 1973, 62, 89–101.Google Scholar
  59. Iversen, S. D., and Weiskrantz, L. Temporal lobe lesions and memory in the monkey. Nature, 1964, 201, 740–742.Google Scholar
  60. Iversen, S. D., and Weiskrantz, L. An investigation of a possible memory defect produced by inferotemporal lesions in the baboon. Neuropsychologia, 1970, 8, 21–36.Google Scholar
  61. Iwai, E., and Mishkin, M. Two visual foci in the temporal lobe of monkeys. In N. Yoshii and N. A. Buchwald (eds.), Neurophysiological Basis of Learning and Behavior. Osaka University Press, Osaka, Japan, 1968.Google Scholar
  62. Iwai, E., and Mishkin, M. Further evidence on the locus of the visual area in the temporal lobe of the monkey. Exp. Neurol., 1969, 25, 585–594.Google Scholar
  63. Jane, J. A., Levey, N., and Carlson, N. J. Tectal and cortical function in vision. Exp. Neurol, 1972, 35, 61–77.Google Scholar
  64. Jones, B., and Mishkin, M. Limbic lesions and the problem of stimulus-reinforcement association. Exp. Neurol, 1972, 36, 362–377.Google Scholar
  65. Jones, E. G., and Powell, T. P. S. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain, 1970, 93, 793–820.Google Scholar
  66. Killackey, H., Snyder, M., and Diamond, I. T. Function of striate and temporal cortex in the tree shrew. J. Comp. Physiol Psychol, 1971, 74, 1–29.Google Scholar
  67. Killackey, H., Wilson, M., and Diamond, I. T. Further studies of the striate and extrastriate visual cortex in the tree shrew. J. Comp. Physiol Psychol, 1972, 81, 45–63.Google Scholar
  68. Klüver, H., and Bucy, P. C. A analysis of certain effects of bilateral temporal lobectomy in the rhesus monkey with special reference to “psychic blindness.” J. Psychol, 1938, 5, 33–54.Google Scholar
  69. Kovner, R., and Stamm, J. S. Disruption of short-term visual memory by electrical stimulation of inferotemporal cortex in the monkey. J. Comp. Physiol Psychol, 1972, 81, 163–172.Google Scholar
  70. Kuypers, H. G. J. M., Szcwarcbart, M. K., Mishkin, M., and Rosvold, H. E. Occipitotemporal corticocortical connections in the rhesus monkey. Exp. Neurol, 1965, 11, 245–262.Google Scholar
  71. Lashley, K. S. The mechanism of vision. XVIII. Effects of destroying the visual “associative areas” of the monkey. Genet Psychol Monogr., 1948, 37, 107–166.Google Scholar
  72. Levine, M. S., Goldrich, S. G., Pond, F. J., Livesey, P., and Schwartzbaum, J. S. Retrograde amnestic effects of inferotemporal and amygdaloid seizures upon conditioned suppression of lever- pressing monkeys. Neuropsychologia, 1970, 8, 431–442.Google Scholar
  73. Lin, C. S., and Kaas, J. H. Some efferent and afferent connections of a medial division of the inferior pulvinar nucleus in the owl monkey (Aotus trivirgatus). Neurosci. Abstr., 1975, 44.Google Scholar
  74. Lin, C. S., Wagor, E., and Kaas, J. H. Projections from the pulvinar to the middle temporal visual area (MT) in the owl monkey, Aotus trivirgatus. Brain Res., 1974, 76, 145–149.Google Scholar
  75. Manning, F. J. Punishment for errors and visual discrimination learning by monkeys with inferotemporal cortex lesions. J. Comp. Physiol Psychol, 1971a, 75, 146–152.Google Scholar
  76. Manning, F. J. The selective attention “deficit” of monkeys with ablations of foveal prestriate cortex. Psychon. Sci., 1971b, 25, 291–292.Google Scholar
  77. Manning, F. J., Gross, G. G., and Gowey, A. Partial reinforcement: Effects on visual learning after foveal prestriate and inferotemporal lesions. Physiol Behav., 1971, 6, 61–64.Google Scholar
  78. Martinez-Millán, L., and Holländer, H. Gortico-cortical projections from striate cortex of the squirrel monkey (Saimiri sciureus): A radioautographic study. Brain Res., 1975, 83, 405–417.Google Scholar
  79. Mason, M., and Wilson, M. Temporal differentiation and recognition memory for visual stimuli in rhesus monkeys. J. Exp. Psychol, 1974, 103, 383–390.Google Scholar
  80. Masterton, M., Skeen, L. G., and RoBards, M. J. Origins of anthropoid intelligence II Pulvinar- extrastriate system and visual reversal learning. Brain Behav. Evol, 1974, 10, 322–353.Google Scholar
  81. Mathers, L. H. Tectal projection to the posterior thalamus of the squirrel monkey. Brain Res., 1971, 35, 295–298.Google Scholar
  82. Mathers, L. H. The synaptic organization of the cortical projection to the pulvinar of the squirrel monkey. J. Comp. Neurol, 1972, 146, 43–60.Google Scholar
  83. McLoon, S. G., Santos-Anderson, R., and Benevento, L. A. Some projections of the posterior bank and floor of the superior temporal sulcus in the rhesus monkey. Neurosci. Abstr., 1975, 64.Google Scholar
  84. Mishkin, M. Visual mechanisms beyond the striate cortex. In R. Russell (ed.), Frontiers of Physiological Psychology. Academic Press, New York, 1966, pp. 93–119.Google Scholar
  85. Mishkin, M. Gortical visual areas and their interaction. In A. G. Karczmar and J. G. Eccles (eds.), Brain and Human Behavior. Springer-Verlag, New York, 1972, pp. 187–208.Google Scholar
  86. Myers, R. E. Projections of the superior colliculus in the monkey. Anat Rec., 1963, 145, 264.Google Scholar
  87. Oscar-Berman, M., and Butters, N. Sequential and single-stage lesions of posterior association cortex in rhesus monkeys. Physiol Behav., 1976, 17, 287–296.Google Scholar
  88. Pandya, D. N., Karol, E. A., and Heilbron, D. The topographical distribution of the interhemispheric projections in the corpus callosum of the rhesus monkey. Brain Res., 1971, 32, 31–43.Google Scholar
  89. Pasik, P., Päsik, T., and Schilder, P. Extrageniculostriate vision in the monkey: Discriminadon of luminous flux-equated figures. Exp. Neurol, 1969, 23, 421–437.Google Scholar
  90. Perryman, K. M., and lindsley, D. B. Visually evoked responses in pulvinar, lateral geniculate, and visual cortex to patterned and unpatterned stimuli in squirrel monkey. Neurosci. Abstr., 1974, 371.Google Scholar
  91. Pohl, W. Dissociation of spatial discrimination deficits following frontal and parietal lesions in monkeys. J. Comp. Physiol. Psychol, 1973, 82, 227–239.Google Scholar
  92. Pribram, K. H. The intrinsic systems of the forebrain. Inj. Field (ed.), Handbook of Physiology, Vol. 2. American Physiological Society, Washington, D.C., 1960.Google Scholar
  93. Pribram, K. H. Languages of the Brain: Experimental Paradoxes and Principles in Neuropsychology. Prentice-Hall, Englewood Cliffs, N.J., 1971.Google Scholar
  94. Pribram, K. H. How is it that sensing so much we can do so little? In F. O. Schmitt and F. G. Worden (eds.). The Neurosciences : Third Study Program. MIT Press, Cambridge, Mass., 1974, pp. 249–261.Google Scholar
  95. Pribram, K. H., Blehert, S. R., and Spinelli, D. N. Effects on visual discrimination of crosshatching and undercutting the inferotemporal cortex of monkeys. J. Comp. Physiol Psychol, 1966, 62, 358–264.Google Scholar
  96. Pribram, K. H., Spinelli, D. N., and Reitz, S. L. The effects of radical disconnection of occipital and temporal cortex on visual behavior of monkeys. Brain, 1969, 92, 301–312.Google Scholar
  97. Reitz, S. L. Effects of serial disconnection of striate and temporal cortex on visual discrimination performance in monkeys. J. Comp. Physiol Psychol, 1969, 68, 139–146.Google Scholar
  98. Rocha-Miranda, C. E., Bender, D. B., Gross, C. G., and Mishkin, M. Visual activation of neurons in inferotemporal cortex depends upon striate cortex and forebrain commissures. J. Neurophysiol, 1975, 38, 475–491.Google Scholar
  99. Rothblat, L. Functions of the temporal lobe in selective attention: A behavioral analysis. Unpublished Ph.D. thesis, University of Connecticut, 1968.Google Scholar
  100. Rothblat, L., and Pribram, K. H. Selective attention: Input filter or response selection? An electrophysiological analysis. Brain Res., 1972, 39, 427–436.Google Scholar
  101. Schilder, P., Pasik, T., and Pasik, P. Extrageniculostriate vision in the monkey. II Demonstration of brightness discrimination. Brain Res., 1971, 32, 383–398.Google Scholar
  102. Schilder, P., Pasik, P., and Pasik, T. Extrageniculostriate vision in the monkey: III. Circle vs. triangle and “red vs. green” discrimination. Exp. Brain Res., 1972, 14, 436–448.Google Scholar
  103. Schneider, G. E. Two visual systems. Science, 1969, 163, 895–902.Google Scholar
  104. Schwartzkroin, P. A., Cowey, A., and Gross, C. G. A test of an “efferent model” of the function of inferotemporal cortex in visual discrimination. Electroencephalogr. Clin Neurophysiol, 1969, 27, 594–600.Google Scholar
  105. Semmes, J. Protopathic and epicritic sensation: A reappraisal. In A. L. Benton (ed.). Contributions to Clinical Neuropsychology. Aldine, Chicago, 1970.Google Scholar
  106. Snyder, M., and Diamond, I. T. The organization and function of the visual cortex in the tree shrew. Brain Behav. Evol, 1968, 1, 244–288.Google Scholar
  107. Snyder, M., Killackey, H., and Diamond, I. T. Color vision in the tree shrew after removal of posterior neocortex. J. Neurophysiol, 1969, 32, 554–563.Google Scholar
  108. Soper, H. V., Diamond, I. T., and Wilson, M. Visual attention and inferotemporal cortex in rhesus monkeys. Neuropsychologia, 1975, 13, 409–419.Google Scholar
  109. Spatz, W. B. An efferent connection of the solitary cells of Meynert: A study with horseradish peroxidase in the marmoset Callithrix. Brain Res., 1975, 92, 450–455.Google Scholar
  110. Spatz, W. B., and Tigges, J. Experimental-anatomical studies on the “middle temporal visual area (MT)” in primates. J. Comp. Neurol, 1972, 146, 451–464.Google Scholar
  111. Spatz, W. B., Tigges, J., and Tigges, M. Subcortical projections, cortical associations and some intrinsic intralaminar connections of the striate cortex in the squirrel monkey (Saimiri). J. Comp. Neurol, 1970, 140, 155–174.Google Scholar
  112. Tigges, J., Spatz, W. B., and Tigges, M. Reciprocal point-to-point connections between parastriate and striate cortex in the squirrel monkey (Saimiri). J. Comp. Neurol, 1973a, 148, 481–490.Google Scholar
  113. Tigges, J., Tigges, M., and Kalaha, C. S. Efferent connections of area 17 in Galago. Am. J. Phys. Anthropol, 1973b, 38, 393–398.Google Scholar
  114. Trevarthen, C. B. Two mechanisms of vision in primates. Psychol Forsch., 1968, 31, 299–337.Google Scholar
  115. Trojanowski, J. Q., and Jacobson, S. Peroxidase labeled subcortical afferents to pulvinar in rhesus monkey. Brain Res., 1975, 97, 144–50.Google Scholar
  116. Turvey, M. T. On peripheral and central processes in vision: Inferences from an information- processing analysis of masking with patterned stimuli. Psychol Rev., 1973, 80, 1–52.Google Scholar
  117. Van Hoesen, G. W., and Pandya, D. N. Some connections of the enterhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. 1. Temporal lobe afferents. Brain Res., 1975, 95, 1–24.Google Scholar
  118. Vaughan, H. G., Jr., and Gross, C. G. Cortical responses to light in unanaesthetized monkeys and their alteration by visual system lesions. Exp. Brain Res., 1969, 8, 19–36.Google Scholar
  119. von Economo, C. The Cytoarchitectonics of the Human Cerebral Cortex. Oxford University Press, London, 1929.Google Scholar
  120. Wagor, E., Lin, C. S., and Kaas, J. H. Some cortical projections of the dorso-medial visual area (DM) of association cortex in the owl monkey, Aotus trivirgatus. J. Comp. Neurol., 1975, 163, 227–250.Google Scholar
  121. Walker, A. E. The Primate Thalamus. University of Chicago Press, Chicago, 1938.Google Scholar
  122. Ward, J. P., and Masterton, R. B. Encephalization and visual cortex in the tree shrew (Tupaia glis). Brain Behav. Evol, 1970, 5, 421–469.Google Scholar
  123. Ward, J. P., Frank J., and Moss, M. Visual acuity deficits in destriate tree shrews as a function of stimulus area and stripe separation. Neurosci. Abstr., 1975, 71.Google Scholar
  124. Ware, C. B. Casagrande, V. A., and Diamond, I. T. Does the acuity of the tree shrew suffer from removal of striate cortex? Brain Behav. Evol., 1972, 5, 18–29.Google Scholar
  125. Weiskrantz, L. Review lecture: Behavioral analysis of the monkey’s visual nervous system. Proc. Roy. Soc. London Ser. B., 1972, 182, 427–455.Google Scholar
  126. Weiskrantz, L. The interaction between occipital and temporal cortex in vision: An overview. In F. O. Schmitt and F. G. Worden (eds.), The Neurosciences: A Third Study Program. MIT Press, Cambridge, Mass., 1974, pp. 189–204.Google Scholar
  127. Whidock, D. G., and Nauta, W. J. H. Subcortical projections from the temporal neocortex. J. Comp. Neurol, 1956, 106, 183–212.Google Scholar
  128. Wilson, M. Effects of circumscribed cortical lesions upon somesthetic and visual discrimination in the monkey. J. Comp. Physiol. Psychol, 1957, 50, 630–635.Google Scholar
  129. Wilson, M. Inferotemporal cortex and the processing of visual information in monkeys. Neuropsychologia, 1968, 6, 135–140.Google Scholar
  130. Wilson, M. Shifts in categorization and identifiability of visual stimuli by rhesus monkeys. Percept. Psychophy., 1971, 10, 271–272.Google Scholar
  131. Wilson, M. Assimilation and contrast effects in visual discrimination by rhesus monkeys. J. Exp. Psychol, 1972, 93, 279–282.Google Scholar
  132. Wilson, M., Rothblat, L., and Kirstein, E. Frequency and recency of reward and inferotemporal lesions. Psychon. Sci, 1968a, 11, 237–238.Google Scholar
  133. Wilson, M., Wilson, W. A., Jr., and Sunenshine, H. S. Perception, learning and retention of visual stimuli by monkeys with inferotemporal lesions. J. Comp. Physiol Psychol, 1968b, 65, 404–412.Google Scholar
  134. Wilson, M., Kaufman, H. M., Zieler, R. E., and Lieb, J. P. Visual identification and memory in monkeys with inferotemporal lesions. J. Comp. Physiol Psychol, 1972, 78, 173–183.Google Scholar
  135. Wilson, M., Diamond, I. T., Ravizza, R. J., and Glendenning, K. K. A behavioral analysis of middle temporal and ventral temporal cortex in the bushbaby (Gialago senegalensis). Neurosci. Abstr., 1975, 73.Google Scholar
  136. Woolsey, C. N. Comparative studies on cortical representation of vision. Vision Res. Suppl, No. 3, 1971, 365–382.Google Scholar
  137. Zeki, S. M. The secondary visual areas of the monkey. Brain Res., 1969a, 13, 197–226.Google Scholar
  138. Zeki, S. M. Representation of central visual fields in prestriate cortex of monkey. Brain Res., 1969b, 14, 271–291.Google Scholar
  139. Zeki, S. M. Interhemispheric connections of prestriate cortex of monkey. Brain Res., 1970, 19, 63–75.Google Scholar
  140. Zeki, S. M. Convergent input from the striate cortex (area 17) to the cortex of the superior temporal sulcus in the rhesus monkey. Brain Res., 1971a, 28, 338–340.Google Scholar
  141. Zeki, S M. Cortical projections from two prestriate areas in the monkey. Brain Res., 1971b, 34, 19–35.Google Scholar
  142. Zeki, S. M. Colour coding in rhesus monkey prestriate cortex. Brain Res., 1973, 53, 422–427.Google Scholar
  143. Zeki, S. M. Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J. Physiol (London), 1974a, 236, 549–573.Google Scholar
  144. Zeki, S. M. Cells responding to changing image size and disparity in the cortex of the rhesus monkey. J. Physiol (London), 1974b, 242, 827–841.Google Scholar
  145. Zeki, S. M. Colour coding in the superior temporal sulcus of rhesus monkey visual cortex. Proc. R. Soc. London Ser. B., 1977, 197, 195–223Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Martha Wilson
    • 1
  1. 1.Department of PsychologyUniversity of ConnecticutStorrsUSA

Personalised recommendations