Vision: Geniculocortical System

  • Mark Berkley

Abstract

This chapter is concerned with the functions of some neural structures involved in vision. It does not cover all aspects of vision nor all the neural structures that may be involved in vision. It is limited to a consideration of a portion of the visual system called the geniculocortical system. For the purposes of this chapter, the geniculocortical system is defined as: (1) the peripheral receptor apparatus (retina); (2) the thalamic region receiving input from the retina and (3) the region of cerebral cortex receiving a direct input from the thalamus (cf. Chapters 5 and 7).

Keywords

Retina Proline Lamination Rosen Kelly 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albus, K., A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat. I. The precision of the topography. Exp. Brain Res., 1975a, 24, 159–179.Google Scholar
  2. Albus, K., A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat. II. The spatial organization of the orientation domain. Exp. Brain Res., 1975b, 24, 181–202.Google Scholar
  3. Albus, K. Predominance of monocularly driven cells in the projection area of the central visual field in cat’s striate cortex. Brain Res., 1975c, 89, 341–347.Google Scholar
  4. Alder, S. W., and Meikle, T. H., Jr. Visual discrimination of flux-equated figures by cats with brain lesions. Brain Res., 1975, 90, 23–43.Google Scholar
  5. Anderson, K. V., and Symmes, D. The superior colliculus and higher visual functions in the monkey. Brain Res., 1969, 13, 37–52.Google Scholar
  6. Arden, G. B., Ikeda, H., and Hill, R. M., Rabbit visual cortex: Reaction of cells to movement and contrast. Nature, 1967, 214, 909–912.Google Scholar
  7. Atencio, F. W., Diamond, I. T., and Ward, J. P. Behavioral study of the visual cortex of Galago senegalensis. J. Comp. Physiol. Psychol, 1975, 89, 1109–1135.Google Scholar
  8. Baden, J., Urbaitis, J., and Meikle, T., Effects of serial bilatoral neocortical ablations on a visual discrimination by cats. Exp. Neurol, 1965, 13, 233–251.Google Scholar
  9. Barbas, H., and Spear, P. D. Effects of serial unilateral and serial bilateral visual cortex lesions on brightness discrimination releaming in rats. J. Comp. Physiol Psychol, 1976, 90, 279–292.Google Scholar
  10. Barlow, H. B. Pattern recognition and the responses of sensory neurons. Ann. N.Y. Acad. Sci, 1969, 156, 872.Google Scholar
  11. Barlow, H. B. Visual pattern analysis in machines and animals. Science, 1972a, 177, 567–576.Google Scholar
  12. Barlow, H. B., Single units and sensation: A neuron doctrine for perceptual psychology? Perception, 1972b, 1, 371–394.Google Scholar
  13. Barlow, H. B., and Levick, W. R. The mechanism of directionally selective units in rabbit’s retina. J. Physiol. (London), 1965, 178, 477–504.Google Scholar
  14. Barlow, H. B., and Levick, W. R., Changes in the maintained discharge with adaptation level in the cat retina. J. Physiol (London), 1969, 202, 699.Google Scholar
  15. Barlow, H. B., Fitzhugh, R., and Kuffler, S. W. Dark adaptation, absolute threshold and Purkinje shift in single units of the cat’s retina. J. Physiol. (London), 1957a, 137, 327–337.Google Scholar
  16. Barlow, H. B., Fitzhugh, R., and Kuffler, S. W., Change of organization in the receptive fields of the cat’s retina during dark adaptation. J Physiol, 1957b, 137, 338–354.Google Scholar
  17. Barlow, H. B., Blakemore, C., and Pettigrew, J. D. The neural mechanism of binocular depth discrimination. J. Physiol (London), 1967, 193, 327–342.Google Scholar
  18. Barlow, H. B., Hill, R. M., and Levick, W. R. Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol (London), 1964, 173, 377–407.Google Scholar
  19. Baumgartner, G., Brown, J. L., and Schulz, A., Responses of single units of the cat visual system to rectangular stimulus patterns. J. Neurophysiol, 1965, 28, 1–18.Google Scholar
  20. Bekoff, M., Lockwood, A., and Meikle, T. H., Jr. Effects of serial lesions in cat visual cortex on a brightness discrimination. Brain Res., 1973, 49, 190–193.Google Scholar
  21. Bender, M., and Furlow, L. T. Visual disturbances produced by bilateral lesions of the occipital lobes with central scotomas. Arch. Neurol Psychiat., 1945, 55, 29–49.Google Scholar
  22. Beresford, W. A., A nauta and gallocyanin study of the cortico-lateral geniculate projection in the cat and monkey. J. Hirnforsch., 1962, 5, 211–255.Google Scholar
  23. Berkley, M., Cat visual psychophysics: Neural correlates and comparisons with man. Progr. Psychobiol Physiol Psychol, 1976, 63–119.Google Scholar
  24. Berkley, M. A., Loop, M. S., and Evinger, C., Temporal modulation sensitivity of the cat. II. Evoked potential estimates. Vision Res., 1975, 15, 563–568.Google Scholar
  25. Berkley, M., Sprague, J., and Bloom, M. The role of geniculo-cortical system in form vision: Areas 17 and 18 and visual activity in the cat. Association for Research in Vision and Ophthalmology Annual Meeting, Sarasota, 1976.Google Scholar
  26. Bilge, M., Bingle, A., Seneviratne, K. N., and Whitteridge, A map of the visual cortex in the cat. J. Physiol Soc., 1967, 191, 116–118.Google Scholar
  27. Bishop, P. O. Neurophysiology of binocular single vision and stereopsis. In Handbook of Sensory Physiology, Vol. VII, Part A, Chap. 4. 1973.Google Scholar
  28. Bishop, P. O., Kozak, W., Levick, W. R., and Vakkur, G. J. The determination of the projection of the visual field on to the lateral geniculate nucleus in the cat. J. Physiol (London), 1962,163, 503–539.Google Scholar
  29. Bishop, P. O., Coombs, J. S., and Henry, G. H., Responses to visual contours: Spatio-temporal aspects of excitation in the receptive fields of simple striate neurones. J. Physiol (London), 1971, 219, 625–657.Google Scholar
  30. Bishop, P. O., Coombs, J. S., and Henry, G. H., Receptive fields of simple cells in the cat striate cortex. J. Physiol (London), 1973, 231, 31–60.Google Scholar
  31. Blakemore, C., and Campbell, F. W. On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J. Physiol (London), 1969, 203, 237.Google Scholar
  32. Bland, B. H., and Cooper, R. M., Posterior neodecortication in the rat: Age at operation and experience. J. Comp. Physiol Psychol, 1969, 69, 345–354.Google Scholar
  33. Bodis-Wollner, I. Visual acuity and contrast sensitivity in patients with cerebral lesions. Science, 1972, 178, 769–771.Google Scholar
  34. Bodis-Wollner, I. Vulnerability of spatial frequency channels in cerebral lesions. Nature, 1976, 261, 209–311.Google Scholar
  35. Bough, E. W., Stereoscopic vision in the macaque monkey: A behavioral demonstration. Nature, 1970, 225, 42.Google Scholar
  36. Boycott, B. B., and Bowling, J. E., Organization of the primate retina: Light microscopy. Phil Trans. Roy. Soc. London Ser. B, 1969, 255, 109–184.Google Scholar
  37. Boycott, B. B., and Wässle, H. The morphological types of ganglion cells of the domestic cat’s retina. J. Physiol (London), 1974, 240, 397–419.Google Scholar
  38. Braun, J. J., Lundy, E. G., and McCarthy, F. V. Depth discrimination in rats following removal of visual neocortex. Brain Res., 1970, 20, 283–291Google Scholar
  39. Brindley, G. S. Physiology of the Retina and the Visual Pathway. Monograph Physiological Society, 2nd ed. Edward Arnold, London, 1970.Google Scholar
  40. Buchtel, H. Visual form discrimination on the basis of relative distribution of light. Science, 1969, 164, 857–858.Google Scholar
  41. Burrows, G., and Hayhow, W. R. The organization of the thalamo-cortical visual pathways in the cat. Brain Behav. Evol, 1971, 4, 220–227.Google Scholar
  42. Butter, C. M.. Impairments in selective attention to visual stimuli in monkeys with inferotemporal and lateral striate lesions. Brain Res., 1969, 12, 374–383.Google Scholar
  43. Campbell, F. W., and Robson, J. G., Application of Fourier analysis to the visibility of gratings. J. Physiol. (London), 1968, 197, 551.Google Scholar
  44. Campbell, F. W., Cooper, G. F., and Enroth-Cugell, C. The spatial selectivity of the visual cells of the cat. J. Physiol (London), 1969, 203, 223–235.Google Scholar
  45. Campbell, F. W., Cooper, G. F., Robson, J. G., and Sachs, M. B. The spatial selectivity of visual cells of the cat and the squirrel monkey. Journal Physiol. (London), 1970, 204, 120–121.Google Scholar
  46. Casagrande, V. A., and Harting, J. K. Transneuronal transport of tritiated fucose and proline in the visual pathways of tree shrew Tupaia glis. Brain Res., 1975, 96, 367–372.Google Scholar
  47. Chow, K. L. Visual discrimination after extensive ablation of optic tract and visual cortex in cats. Brain Res., 1968, 9, 363–366.Google Scholar
  48. Chow, K. L., Lindsley, D. F., and Gollender, M. Modification of response patterns of lateral geniculate neurons after paired stimulation of contralateral and ipsilateral eyes. J. NeurophysioL, 1968, 31, 729.Google Scholar
  49. Chow, K. L., Masland, R. H., and Steward, D. L. Receptive field characteristics of striate cortical neurons in the rabbit. Brain Res., 1971, 33, 337.Google Scholar
  50. Cleland, B. G., and Levick, W. R. Brisk and sluggish concentrically organized ganglion cells in the cat’s retina. J. Physiol. (London), 1974a, 240, 421–456.Google Scholar
  51. Cleland, B. G., and Levick, W. R. Properties of rarely encountered types of ganglion cells in the cat’s retina and an overall classification. J. Physiol. (London), 1974b, 240, 457–492.Google Scholar
  52. Cleland, B. G., Dubin, M. W., and Levick, W. R. Simultaneous recording of input and output of lateral geniculate neurones. Nature New Biol, 1971a, 231, 191–192.Google Scholar
  53. Cleland, B. G., Dubin, M. W., and Levick, W. R. Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus. J. Physiol (London), 1971b, 217, 473–496.Google Scholar
  54. Cleland, B. G., Levick, W. R., and Sanderson, K. J. Properties of sustained and transient ganglion cells in the cat retina. J. Physiol (London), 1973, 228, 649–680.Google Scholar
  55. Cornwell, P., Overman, W., Levitsky, C., Shipley, J., and Lezynski, B., Performance on the visual cliff by cats with marginal gyrus lesions. J. Comp. Physiol Psychol, 1976, 90, 996–1010.Google Scholar
  56. Cowey, A. Projection of the retina on to striate and preoiriate cortex in the squirrel monkey, Saimiri sciureus. J. Neurophysiol, 1964, 27, 366–393.Google Scholar
  57. Cowey, A., Perimetric study of field defects in monkeys after cortical and retinal ablations. Q. J. Exp. Psychol, 1967, 19, 232.Google Scholar
  58. Cowey, A., and Ellis, C. M. The cortical representation of the retina in squirrel and rhesus monkeys and its relation to visual acuity. Exp. Neurol, 1969, 24, 374–385.Google Scholar
  59. Cowey, A., and Weiskrantz, L., A perimetric study of visual field defects in monkeys. Q. J. Exp. Psychol, 1963, 15, 91–115.Google Scholar
  60. Cowey, A., and Weiskrantz, L. A comparison of the effects of inferotemporal and striate cortex lesions on the visual behavior of rhesus monkey. Q. J. Exp. Psychol, 1967, 19, 246–253.Google Scholar
  61. Craft, L. H., and Butter, C. M. Effect of striate cortex removal on wavelength discrimination in rats. Psychol. Rec., 1968, 18, 311.Google Scholar
  62. Dalby, D. A., Meyer, D. R., and Meyer, P. M. Effects of occipital neocortical lesions upon visual discriminations in the cat. Physiol Behav., 1970, 5, 727–734.Google Scholar
  63. Daniel, P. M., and Whitteridge, D. The representation of the visual field on the cerebral cortex in monkeys. J. Physiol (London), 1961, 159, 203–221.Google Scholar
  64. Daw, N. W., and Pearlman, A. L. Cat colour vision: One cone process or several? J. Physiol (London), 1969, 201, 745.Google Scholar
  65. Daw, N. W., and Pearlman, A. L., Cat colour vision: Evidence for more than one cone process. J. Physiol (London), 1970, 211, 125–137.Google Scholar
  66. Denny-Brown, D., and Chambers, R. A., Physiological aspects of visual perception. L Functional aspects of visual cortex. Arch. Neurol, 1976, 33, 219–227.Google Scholar
  67. deValois, R. L., Abramov, I., and Mead, W. R. Single cell analysis of wavelength discrimination at the lateral geniculate nucleus in the macaque. J. Neurophysiol, 1967, 30, 415–433.Google Scholar
  68. Diamond, I. T., Organization of the visual cortex: Comparative anatomical and behavioral studies. Fed. 199 Proc., 1976, 55, 60–67.Google Scholar
  69. Dodwell, P. C., and Freedman, N. L. Visual form discrimination after removal of the visual cortex in cats. Science, 1968, 160, 559–560.Google Scholar
  70. Doty, R. W. Survival of pattern vision after removal of striate cortex in the adult cat. J. Comp. Neurol., 1971, 143, 341.Google Scholar
  71. Doty, R. W., Glickstein and Calvin, W. H., Lamination of the lateral geniculate nucleus in the squirrel monkey, Saimiri sciureus. J. Comp. Neurol., 1966, 127, 335–340.Google Scholar
  72. Dow, B. M., and Gouras, P. Color and spatial specificity of single units in rhesus monkey foveal striate cortex. J. NeurophysioL, 1973, 36, 79–100.Google Scholar
  73. Dowling, J. E. Organization of vertebrate retinas. Invest. Ophthalmol, 1970, 9, 655–680.Google Scholar
  74. Dowling, J. E., and Boycott, B. B., Organization of the primate retina: Election microscopy. Proc. Roy. Soc. London Ser., B 1966, 166, 80–111.Google Scholar
  75. Dräger, U. C. Autoradiography of tritiated proline and fucose transported transneuronally from the eye to the visual cortex in pigmented and albino mice. Brain Res., 1974, 82, 284–292.Google Scholar
  76. Dräger, U. C. Receptive fields of single ceUs and topography in mouse visual cortex. J. Comp. Neurol, 1975, 160, 269–289.Google Scholar
  77. Enroth-Cugell, C., and Robson, J. G. The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol (London), 1966, 187, 517–552.Google Scholar
  78. Fillenz, M., Binocular interaction in the lateral geniculate body of the cat. In R. Jung and H. Kornhuber (eds.), The Visual System: Neurophysiology & Psychophysics, Berlin-Gottingen-Heidelberg: Springer, 1961.Google Scholar
  79. Fischer, B., and Krüger, J. The shift-effect in the cat’s lateral geniculate neurons. Exp. Brain Res., 1974, 21, 225–227.Google Scholar
  80. Fischer, B., Krüger, J., and Droll, W. Quantitative aspects of the shift-effect in cat retinal ganglion cells. Brain Res., 1975, 83, 391–403.Google Scholar
  81. Fox, R. F., and Blake, R. R. Stereoscopic vision in the cat. Nature, 1971, 233, 55–56.Google Scholar
  82. Fukuda, Y. Receptive field organization of cat optic nerve fibers with special reference to conduction velocity. Vision Res., 1971, 11, 209.Google Scholar
  83. Fukuda, Y. Differentiation of principal cells of the rat lateral geniculate body into two groups; fast and slow cells. Exp. Brain Res., 1973, 17, 242–260.Google Scholar
  84. Fukuda, Y., and Saito, H.-A. S. The relationship between response characteristics to flicker stimulation and receptive field organization in the cat’s optic nerve fibers. Vision Res., 1971, 11, 227–240.Google Scholar
  85. Fukuda, Y., and Stone, J., Direct identification of the cell bodies of Y-, X- and W-cells in the cat’s retina. Vision Res., 1975, 15, 1034–1036.Google Scholar
  86. Garey, L., and Powell, T. The projection of the retina in the cat. J. Anat. (London), 1968,102, 189–222.Google Scholar
  87. Garey, L. J., and Powell, T. P. S. The projection of the lateral geniculate nucleus upon the cortex in the cat. Proc. Roy. Soc. London Ser. B, 1967, 169, 107–126.Google Scholar
  88. Galambos, R., Norton, T. T., and Frommer, G. P. Optic tract lesions sparing pattern vision in cats. Exp. Neurol, 1967, 18, 8–25.Google Scholar
  89. Glees, P. The termination of optic fibers in the lateral geniculate body of the cat. J. Anat. (London), 1941, 75, 434–440.Google Scholar
  90. Glendenning, K. V., and Kofron, E. A. Projections of individual laminae of the lateral geniculate nucleus in the prosimian. Neurosci. Abstr., 1974, 229.Google Scholar
  91. Glickstein, M. Laminar structure of the dorsal lateral geniculate nucleus in the tree shrew (Tupaia glis). J. Comp. Neurol, 1967, 131, 93–102.Google Scholar
  92. Glickstein, M. Organization of the visual pathways. Science, 1969, 164, 917–926.Google Scholar
  93. Glickstein, M., King, R. A., Miller, J., and Berkley, M., Cortical projections from the dorsal lateral geniculate nucleus of cats. J. Comp. Neurol, 1967, 130, 55–76.Google Scholar
  94. Gouras, P. Identification of cone mechanisms in monkey ganglion cells. J. Physiol (London), 1968, 199, 533–547.Google Scholar
  95. Grafstein, B., and Laurens, R. Transport of radioactivity from eye to visual cortex in the mouse. Exp. Neurol, 1973, 39, 44–57.Google Scholar
  96. Guillery, R. W., A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat. J. Comp. Neurol, 1966, 128, 21–50.Google Scholar
  97. Guillery, R. W. The laminar distribution of retinal fibers in the dorsal lateral geniculate nucleus of the cat: A new interpretation. J. Cmnp. Neurol, 1970, 138, 339.Google Scholar
  98. Guillery, R. W., and Kaas, J. H. A study of normal and congenitally abnormal retinogeniculate projections in cats. J. Comp. Neurol, 1971, 143, 73.Google Scholar
  99. Guillery, R. W., Okoro, A. N., and Witkop, C. J., Jr. Abnormal visual pathways in the brain of a human albino. Brain Res., 1975, 96, 373–377.Google Scholar
  100. Hall, W. C., and Diamond, I. T., Organization and function of the visual cortex in hedgehog. II. An ablation study of pattern discrimination. Brain Behav. Evol, 1968, 1, 215.Google Scholar
  101. Harting, J. K., Diamond, I. T., and Hall, W. C. Anterograde degeneration study of the cortical projections of the lateral geniculate and pulvinar nuclei in the tree shrew (Tupaia glis). J. Comp. Neurol, 1973, 150, 393–440.Google Scholar
  102. Hayhow, W. R. The cytoarchitecture of the lateral geniculate body in the cat in relation to the distribution of crossed and uncrossed optic fibers. J. Comp. Neurol., 1958, 110, 1–64.Google Scholar
  103. Hoffmann, K. P., Conduction velocity in pathways from retina to superior coUiculus in the cat: A correlation with receptive-field properties. J. NeurophysioL, 1973, 36, 409–424.Google Scholar
  104. Hoffmann, K. P., Stone, J., and Sherman, S. M., Relay of receptive-field properties in dorsal lateral geniculate nucleus of the cat. J. NeurophysioL, 1972, 4, 518–531.Google Scholar
  105. Holländer, H., and Martinez-Millan, L., Short communications: Autoradiographic evidence for a topographically organized projection from the striate cortex to the lateral geniculate nucleus in tjie rhesus monkey (Macaca mulatta). Brain Res., 1975, 100, 407–411.Google Scholar
  106. Holmes, G. Disturbances of vision by cerebral lesions. Br. J. Ophthalmol, 1918, 2, 353–362.Google Scholar
  107. Horel, H., Bettinger, L., Royce, G., and Meyer, D. Role of neocortex in the learning and relearning of two visual habits by the rat. J. Comp. Physiol Psychol, 1966, 61, 66–78.Google Scholar
  108. Hubel, D. H. An autoradiographic study of the retino-cortical projections in the tree shrew (Tupaia glis). Brain Res., 1975, 96, 41–50.Google Scholar
  109. Hubel, D. H., and Wiesel, T. N. Receptive fields of single neurons in the cat’s striate cortex. J. Physiol (London), 1959, 148, 574.Google Scholar
  110. Hubel, D. H., and Wiesel, T. N. Integrative action in the cat’s lateral geniculate body. J. Physiol (London), 1961, 155, 385–398.Google Scholar
  111. Hubel, D. H., and Wiesel, T. N. Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol (London), 1962, 160, 106–154.Google Scholar
  112. Hubel, D. H., and Wiesel, T. N. Shape and arrangement of columns in cat’s striate cortex. J. Physiol (London). 1963. 165, 559–568.Google Scholar
  113. Hubel, D. H., and Wiesel, T. N. Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysiol, 1965a, 25, 1041–1059.Google Scholar
  114. Hubel, D. H., and Wiesel, T. N. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol, 1965b, 28, 229–289.Google Scholar
  115. Hubel, D. H., and Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol (London), 1968, 195, 215.Google Scholar
  116. Hubel, D. H., and Wiesel, T. N. Anatomical demonstration of columns in the monkey striate cortex. Nature, 1969, 227, 747.Google Scholar
  117. Hubel, D. H., and Wiesel, T. N. The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J. Physiol (London), 1970a, 206, 419.Google Scholar
  118. Hubel, D. H., and Wiesel, T. N. Cells sensitive to binocular depth in area 18 of the macaque monkey cortex. Nature, 1970b, 225, 41.Google Scholar
  119. Hubel, D. H., and Wiesel, T. N. Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J. Comp. Neurol, 1972, 146, 421–450.Google Scholar
  120. Hubel, D. H., and Wiesel, T. N., Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor. J. Comp. Neurol, 1974a, 158, 295–306.Google Scholar
  121. Hubel, D. H., and Wiesel, T. N. Sequence regularity and geometry of orientation columns in the monkey striate cortex. J. Comp. Neurol, 1974b, 158, 267–294.Google Scholar
  122. Humphrey, N., and Weiskrantz, L. Vision in monkeys after removal of the striate cortex. Nature, 1967, 215, 595–597.Google Scholar
  123. Ikeda, H., and Wright, M.J. Receptive field organization of "sustained" and "transient" retinal ganglion cells which subserve different functional roles. J. Physiol (London), 1972, 227, 769–800.Google Scholar
  124. Ikeda, H., and Wright, M. J. The relationship between the "sustained-transient" and the "simple-complex" classifications of neurones in area 17 of the cat. J. Physiol (London), 1974, 244, 59–60.Google Scholar
  125. Ikeda, H., and Wright, M.J. Spatial and temporal properties of "sustained" and "transient" neurones in area 17 of tiie cat’s visual cortex. Exp. Brain Res., 1975a, 22, 363–383.Google Scholar
  126. Ikeda, H., and Wright, M. J. Retinotopic distribution, visual latency and orientation tuning of "sustained" and "transient" cortical neurones in area 17 of the cat. Exp. Brain Res., 1975b, 22, 385–398.Google Scholar
  127. Ikeda, H., and Wright, M. J. The latency of visual cortical neurones in area 17 in the cat to visual stimuli with reference to the sustained (X) and transient (Y) and "simple" and "complex" cell classification. J. Physiol (London), 1975c, 245, 114P.Google Scholar
  128. Ikeda, H., and Wright, M. J. Properties of sustained-X, transient-Y, and transient-X cells in the cat’s lateral geniculate nucleus. J. Physiol (London), 1976, 254, 1, 65P.Google Scholar
  129. Jacobson, M. The representation of the retina on the optic tectum of the frog. Correlation between retinotectal magnification factor and retinal ganglion cell count. Q.J. Exp. Physiol, 1962, 47, 170–178.Google Scholar
  130. Jones, A. E. The lateral geniculate complex of the owl monkey (Aotus trivirgatus). J. Comp. Neurol, 1966, 126, 171–180.Google Scholar
  131. Joshua, D. E., and Bishop, P. O. Binocular single vision and depth discrimination. Receptive field disparities for central and peripheral vision and binocular interaction on peripheral single units in cat striate cortex. Exp. Brain Res., 1970, 10, 389–416.Google Scholar
  132. Jung, R. Visual perception and neurophysiology. In Jung, R. (ed.) Central Processing of Visual Information Part A. Springer-Verlag: Berlin, 1973, pp 1–152.Google Scholar
  133. Kaas, J. H., Hall, W. C., and Diamond, I. T. Cortical visual areas I and II in the Hedgehog: Relation Between evoked potential maps and architectonic subdivisions. J. Neurophysiol, 1970, 33, 595.Google Scholar
  134. Kaas, J. H., Guillery, R. W., and Allman, J. M. Some principles of organization in the dorsal lateral geniculate nucleus. Brain, Behav. Evol, 1912a, 6, 253–299.Google Scholar
  135. Kaas, J. H., Hall, W. C., and Diamond, I. T. Visual cortex of the grey squirrel (Sciurus carolinensis): architectonic subdivisions and connections from the visual thalamus. J. Comp. Neurol, 1912b, 145, 273–306.Google Scholar
  136. Kaas, J. H., Hall, W. C., Killackey, H., and Diamond, I. T. Visual cortex of the tree shrew (Tupaiaglis): Architectonic subdivisions and representations of the visual field. Brain Res., 1912c, 42, 491–496.Google Scholar
  137. Kaas, J. H., Guillery, R. W., and Allman, J. M., Discontinuities in the dorsal lateral geniculate nucleus corresponding to the optic disc: A comparative study. J. Comp. Neurol, 1973, 147, 163–180.Google Scholar
  138. Kanagasuntheram, R., Krishnamurti, A., and Wong, W. C. Observations on the lamination of the lateral geniculate body in some primates. Brain Res., 1969, 14, 623–631.Google Scholar
  139. Keating, E. G., and Horel, J. A. Cortical blindness after overlapping retinal-striate lesions: A limit to plasticity in the central visual system. Brain Res., 1976, 101, 327–339.Google Scholar
  140. Kelly, D. H. Adaptation effects on spatio-temporal sine-wave thresholds. Vision Res., 1972, 12, 89.Google Scholar
  141. Kennedy, J. L. The nature and physiological basis of visual movement discrimination in animals. Psychol Rev., 1936a, 43, 494–521.Google Scholar
  142. Kennedy, J. L. The effect of complete and partial bilateral extirpation of the area striata on visual movement discrimination in the cat. Psychol Bull, 1936b, 33, 754.Google Scholar
  143. Kennedy, J. L. The effects of complete and partial occipital lobectomy upon thresholds of visual real movement discrimination in the cat. J Genet. Psychol, 1939, 54, 119–149.Google Scholar
  144. Kicliter, E., Loop, M., and Jane, J. Luminous flux, wavelength and stripe orientation discrimination in ground squirrels (Citellus tridecemlineatus) after posterior neocortical lesions. Soc. Neurosci. Abstr., 1974, 281.Google Scholar
  145. Killackey, H., and Diamond, I. T., Visual attention in the tree shrew: An ablation study of the striate and extrastriate visual cortex. Science, 1911, 171, 696–699.Google Scholar
  146. Killackey, H., Snyder, M., and Diamond, I. T., Function of striate and temporal cortex in the tree shrew. J. Comp. Physiol Monogr., 1971, 74, 1–29.Google Scholar
  147. Killackey, H., Wilson, M., and Diamond, I. T. Further studies of the striate and extrastriate visual cortex in the tree shrew. J Comp. Physiol Psychol, 1972, 81, 45–63.Google Scholar
  148. Kinston, W. J., Vadas, M. A., and Bishop, P. O. Multiple projection of the visual field to the medial portion of the dorsal lateral geniculate nucleus and the adjacent nuclei of the thalamus of the cat. J. Comp. Neurol, 1969, 136, 295–316.Google Scholar
  149. Klüver, H., Visual functions after removal of the occipital lobes. J. Psychol (London), 1941, 11, 23–45.Google Scholar
  150. Koerner, F., and Teuber, H. L. Visual field defects after missile injuries to the geniculo-striate pathway in man. Exp. Brain Res., 1973, 18, 88–113.Google Scholar
  151. Kufifler, S. W., Discharge patterns and functional organization of mammalian retina. J. Neurophysiol, 1953, 16, 37–68.Google Scholar
  152. Kupfer, C. The laminar pattern and distribution of cell size in the lateral geniculate nucleus of man. J. Neurophathol Exp. Neurol, 1965, 24, 643–652.Google Scholar
  153. Lashley, K. S. The mechanism of vision. IV. The cerebral areas necessary for pattern vision in the rat. J Comp. Neurol, 1931, 55, 419–478.Google Scholar
  154. Lashley, K. S., and Frank, M. The mechanism of vision. X. Postoperative disturbances of habits based on detail vision in the rat after lesions in the cerebral visual areas. Comp. Psychol, 1934, 17, 355–391.Google Scholar
  155. Laties, A. M., and Sprague, J. M. The projection of optic fibers to the visual centers in the cat. J. Comp. Nmrol, 1966, 127, 35–70.Google Scholar
  156. Leicester, J., and Stone, J. Ganglion, amacrine and horizontal cells of the cat’s retina. Vision Res., 1967, 7, 695.Google Scholar
  157. LeGros Clark, W. E. The laminar organization and cell content of the lateral geniculate body in the monkey. J. Anat. (London), 1941, 75, 419–431.Google Scholar
  158. LeGros Clark, W. The laminar pattern of the lateral geniculate nucleus considered in relation to color vision. Doc. Ophthalmol, 1949, 3, b1.Google Scholar
  159. LeGros Clark, W. E., and Penman, C. G. The projection of the retina in the lateral geniculate body. Proc. Roy. Soc. London Ser. B, 1934, 114, 291–313.Google Scholar
  160. Lepore, F., Cardu, B., Rasmussen, T., and Malmo, R. B. Rod and cone sensitivity in destriate monkeys. Brain Res., 1975, 93, 203–221.Google Scholar
  161. LeVay, S., and Gilbert, C. D. Laminar patterns of geniculocortical projection in the cat. Brain Res., 1976, 113, 1–19.Google Scholar
  162. LeVay, S., Hubel, D. H., and Wiesel, T. N. The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain. J. Comp. Neurol, 1975, 159, 559–576.Google Scholar
  163. Levick, W. R., and Cleland, B. G. Receptive fields of cat retinal ganglion cells having slowly conducting axons. Brain Res., 1974a, 74, 156–160.Google Scholar
  164. Levick, W. R., and Cleland, B. G. Selectivity of microelectrodes in recordings from cat retinal ganglion cells. J. Neurophysiol, 1974b, 37, 1387–1393.Google Scholar
  165. Lewellyn, D., Lowes, G., and Isaacson, R. Visually mediated behavior following neocortical destruction in the rat. J. Comp. Physiol Psychol, 1969, 69, 25–32.Google Scholar
  166. Lindsley, D., Chow, K. L., and Gollender, M., Dichoptic interactions of lateral geniculate neurons of cats to contralateral and ipsilateral eye stimulation. J. Neurophysiol, 1967, 30, 628–644.Google Scholar
  167. Loop, M. S., and Berkley, M. A., Temporal modulation sensitivity of the cat. I. Behavioral measures. Vision Res., 1975, 15, 555–561.Google Scholar
  168. Lopes da Silva, F. H., Dynamic characteristics of visual evoked potentials: A quantitiative study of cortical and subcortical potentials evoked in dog by sinewave modulated light and their relation to flicker fusion. Report 1.5.63–3, Institute of Medical Physics Utrecht, The Netherlands, March 25, 1970.Google Scholar
  169. Maffei, L., and Fiorentini, A. Retino-geniculate convergence and the analysis of contrast. Brain Res., 1911, 31, 371–372.Google Scholar
  170. Maffei, L., and Fiorentini, A. Retinogeniculate convergence and analysis of contrast. J. Neurophysiol, 1972, 35, 65–72.Google Scholar
  171. Maffei, L., and Fiorentini, A. The visual cortex as a spatial frequency analyser. Vision Res., 1973, 13, 1255–1267.Google Scholar
  172. Maffei, L., and Rizzolatti, G., Transfer properties of the lateral geniculate body. J. Neurophysiol, 1967, 30, 333–340.Google Scholar
  173. Maffei, L., Cervetto, L., and Fiorentini, A. Transfer characteristics of excitation and inhibition in cat retinal ganglion cells. J. Neurophysiol, 1970, 33, 276–284.Google Scholar
  174. Malmo, R. Effects of striate cortex ablation on intensity discrimination and spectral intensity distribution in the rhesus monkey. Neuropsychologia (Berlin), 1966, 4, 9–26.Google Scholar
  175. Malpeli, J. G., and Baker, F. H. The representation of the visual field in the lateral geniculate nucleus of Macaca mulatta. J. Comp. Neurol, 1975, 161, 569–594.Google Scholar
  176. Marg, E., Adams, J., and Rutkin, B. Receptive fields of cells in the human visual cortex. Experientia, 1968, 24, 348–350.Google Scholar
  177. Marrocco, R. T., and Brown, J. B. Correlation of receptive field properties of monkey LGN cells with the conduction velocity of retinal afferent input. Brain Res., 1975, 92, 137–144.Google Scholar
  178. Marshall, W., Talbot, S., and Ades, H. Cortical response of anesthetized cat to gross photic and electrical stimulation. J. Neurophysiol, 1943, 6, 1–15.Google Scholar
  179. Matthews, M. R., Cowan, W. M., and Powell, T. P. S., Transneuronal cell degeneration in the lateral geniculate nucleus of the macaque monkey. J. Anat. (London), 1960, 94, 145–169.Google Scholar
  180. Mcllwain, J. T., Receptive fields of optic tract axons and lateral geniculate cells: Peripheral extent and barbiturate sensitivity. J. Neurophysiol, 1964, 27, 1154–1173.Google Scholar
  181. Mcllwain, J. T. Some evidence concerning the physiological basis of the periphery effect in the cat’s retina. Exp. Brain Res., 1966, 1, 265–271.Google Scholar
  182. Mead. L. C. The curve of visual intensity discrimination in the cat before and after removal of the striate area of the cortex. Dissertation, 1939, University of Rochester.Google Scholar
  183. Meyer, P. M. Analysis of visual behavior in cats with extensive neocortical ablations. J. Comp. Physiol Psychol, 1963, 56, 397–401.Google Scholar
  184. Meyer, P. M., Anderson, R. A., and Braun, M. G. Visual cliff preferences following lesions of the visual neocortex in cats and rats. Psychon. Sci, 1966, 4, 269–270.Google Scholar
  185. Michael, C. R. Visual receptive fields of single neurons in superior colliculus of the ground squirrel. J Neurophysiol, 1972, 33, 815–832.Google Scholar
  186. Michael, C. R. Opponent-color and opponent-contrast cells in lateral geniculate nucleus of the ground squirrel. J. Neurophysiol, 1973, 36, 536–550.Google Scholar
  187. Minkowski, M. Über den Verlauf, die Endigung und die Zentrale Repräsentation von gebreutzten und ungekreuzen Sehnerven fasern bei einigen Säugetieren und bei Meuchen. Schweiz. Arch. Neurol Psychiat., 1920, 6, 201–268.Google Scholar
  188. Mishkin, M., and Weiskrantz, L. Effects of cortical lesions in monkeys on critical flicker frequency. J. Comp. Physiol. Psychol, 1959, 52, 660.Google Scholar
  189. Mize, R. R., Wetzel, A. B., and Thompson, V. E. Contour discrimination in the rat following removal of posterior cortex. Physiol Behav., 1971, 6, 241–246.Google Scholar
  190. Movshon, J. A. The velocity tuning of single units in cat striate cortex. J. Physiol (London), 1975, 249, 445–468.Google Scholar
  191. Murphy, E. H., and Chow, K. L. Effects of striate and occipital cortical lesions on visual discrimination in the rabbit. Exp. Neurol, 1974, 42, 78–88.Google Scholar
  192. Murphy, E. H., and Stewart, D. L. Effects of neonatal and adult striate lesions on visual discrimination in the rabbit. Exp. Neurol, 1974, 42, 89–96.Google Scholar
  193. Murphy, E. H., Mize, R. R., and Schechter, P. B. Visual discrimination following infant and adult ablation of cortical areas 17, 18, and 19 in the cat. Exp. Neurol, 1975, 49, 386–405.Google Scholar
  194. Niimi, K., and Sprague, J. M. Thalamo-cortical organization of the visual system in the cat. J. Comp. Neurol, 1970, 138, 29–250.Google Scholar
  195. Nöda, H., Tamaki, Y., and Iwama, K. Binocular units in the lateral geniculate nucleus of chronic cats. Brain Res., 1972, 41, 81–99.Google Scholar
  196. Norton, A. C., and Clark, G. Effects of cortical and collicular lesions on brightness and flicker discrimination in the cat. Vision Res., 1963a, 3, 29–44.Google Scholar
  197. Norton, A. C., and Clark, G. Acquisition of a flicker discrimination in the cortically blind cat. Vision Res., 1963b, 5, 75–79.Google Scholar
  198. Norton, T. T., Galambos, R., and Frommer, G. P. Optic tract lesions destroying pattern vision in cats. Exp. Neurol, 1967, 18, 26–37.Google Scholar
  199. O’Leary, J. L. Structure of the area striata of the cat. J. Comp. Neurol, 1941, 75, 131–164.Google Scholar
  200. Otsuka, R., and Hassler, R. Über Aufl 3au and Gliederung der corticalen Sehsphare bei der Katze. Arch. Psychiat. Ztsch. Neurol, 1962, 203, 212–234.Google Scholar
  201. Packwood, J., and Gordon, B. Stereopsis in normal domestic cat, Siamese cat, and cat raised with alternating monocular occlusion. J. Neurophysiol, 1975, 38, 1485–1499.Google Scholar
  202. Pasik, P., Pasik, T., and Krieger, H. Fhe effects of cerebral lesions upon optokinetic nystagmus in monkeys. J. Neurophysiol, 1959, 22, 297–304.Google Scholar
  203. Pasik, T., and Pasik, P., The visual world of monkeys deprived of striate cortex and the importance of accessory optic system in its perception. Abstract of paper given at International Symposium on Visual Processes in Vertebrates, Santiago, Chile, 1970.Google Scholar
  204. Pasik, P., Pasik, T., and Schilder, P., Extrageniculostriate vision in the monkey: Discrimination of luminous flux-equated figures. Exp. Neurol, 1969, 24, 421–437.Google Scholar
  205. Pearlman, A. L., and Daw, N. W., Opponent color cells in the cat lateral geniculate nucleus. Science, 1970, 167, 84–86.Google Scholar
  206. Peters, Alan, and Palay, S. L., The morphology of laminae A and Ai of the dorsal nucleus of the lateral geniculate body of the cat. J. Anat., 1966, 100, 451–486.Google Scholar
  207. Pettigrew, J. D., Nikara, T., and Bishop, P. O., Responses to moving slits by single units in cat striate cortex. Exp. Brain Res., 1968, 6, 373.Google Scholar
  208. Pitts, W., and McCulloch, W. How we know universals: The perception of auditory and visual forms. Bull Math. Biophys., 1947, 9, 127–147.Google Scholar
  209. Pollen, D. A., and Ronner, S. F. Periodic excitability changes across the receptive fields of complex cells in the striate and parastriate cortex of the cat. J. Physiol, 1975, 245, 667–697.Google Scholar
  210. Pollen, D. A., Lee, J. R., and Taylor, J. H. How does the striate cortex begin the reconstruction of the visual world? Science, 1971, 173, 74–77Google Scholar
  211. Polyak, S. The Retina. University of Chicago Press, Chicago, 1948.Google Scholar
  212. Polyak, S. The Vertebrate Visual System. University of Chicago Press, Chicago, 1957.Google Scholar
  213. Poppel, E., Held, R., and Frost, D. Residual visual function after brain wounds involving the central visual pathways in man. Nature, 1973, 243, 295–296.Google Scholar
  214. Poppel, E., von Cramon, D., and Backmund, H. Eccentricity-specific dissociation of visual functions in patients with lesions of the central visual pathways. Nature, 1975, 256, 489–490.Google Scholar
  215. Ramon y Cajal, S. Die Retina der Wirbelthiere. (Wiesbaden, 1892, Bergman’s trans.) In S. A. Thorpe and M. Glickstein, (eds.), The Structure of the Retina. Thomas, Springfield, Ill., 1972.Google Scholar
  216. Richards, W. Visual processing in scotomata. Exp. Brain Res., 1973, 17, 333–347.Google Scholar
  217. Riddoch, G. Dissociation of visual perceptions due to occipital injuries, with especial reference to appreciation of movement. Brain, 1917, 40, 15–57.Google Scholar
  218. Rodieck, R. W. Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Res., 1965, 5, 583–601.Google Scholar
  219. Rodieck, R. Receptive fields in the cat retina: A new type. Science, 1967, 157, 90–92.Google Scholar
  220. Rodieck, R. W. The Vertebrate Retina: Principles of Structure and Function. Freeman, San Francisco, 1973.Google Scholar
  221. Rolls, E. T., and Cowey, A. Topography of the retina and striate cortex and its relationship to visual acuity in rhesus monkeys and squirrel monkeys. Exp. Brain Res., 1970, 10, 298–310.Google Scholar
  222. Rosenquist, A. C., Edwards, S. B., and Palmer, L. A. An autoradiographic study of the projections of the dorsal lateral geniculate nucleus and the posterior nucleus in the cat. Brain Res., 1974, 80, 11–93.Google Scholar
  223. Sanderson, K. J. Visual field projection columns and magnification factors in the lateral geniculate nucleus of the cat. Exp. Brain Res., 1971a, 13, 159–177.Google Scholar
  224. Sanderson, K. J., The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat. J. Comp. Neurol, 1971b, 143(1), 101–117.Google Scholar
  225. Sanderson, K. J. Lamination of the dorsal lateral geniculate nucleus in carnivores of the weasel (Mustelidae), raccoon(Procyonidae) and fox (Canidae) families. J. Comp. Neurol, 1974, 153, 239–266.Google Scholar
  226. Sanderson, K.J., Darian-Smith, L, and Bishop, P. O. Binocular corresponding receptive fields of single units in the cat dorsal lateral geniculate nucleus. Vision Res., 1969, 9, 1927.Google Scholar
  227. Sanderson, K., Bishop, P., and Darian-Smith, I. The properties of the binocular receptive fields of lateral geniculate neurons. Exp. Brain Res., 1971, 13, 178–207.Google Scholar
  228. Sanides, F., and Hoffmann, J. Cyto- and myeloarchitecture of the visual cortex of the cat and of the surrounding integration cortices. J. Hirnforsch., 1969,11(112), 79–104.Google Scholar
  229. Sarmiento, R. F. The stereoacuity of macaque monkey. Vision Res., 1975, 15, 493–498.Google Scholar
  230. Schilder, P., Loss of a brightness discrimination in the cat following removal of the striate area. J. Neurophysiol, 1966, 29, 888.Google Scholar
  231. Schilder, P., Pasik, T., and Pasik, P., Extrageniculostriate vision in the monkey. II. Demonstration of brightness discrimination. Brain Res., 1971, 52, 383–398.Google Scholar
  232. Schilder, P., Pasik, P., and Pasik, T., Extrageniculostriate vision in the monkey. III. Circle vs. triangle and "red vs. green" discrimination.Exp. Brain Res., 1972, 14, 436–448.Google Scholar
  233. Schwartz, A. S., and Cheney, C. Neural mechanisms involved in the critical flicker frequency of the cat. Brain Res., 1966, 1, 369–380.Google Scholar
  234. Schwartz, A., and Clark, G., Discrimination of intermittent photic stimulation in the cat without its striate cortex. J. Comp. Physiol Psychol, 1957, 50, 468–474.Google Scholar
  235. Sefton, A. J., and Bruce, I. S. Properties of cells in the lateral geniculate nucleus. Vision Res. Suppl No. 3, 1971, 239–252.Google Scholar
  236. Shatz, C., Lindstrom, S., and Wiesel, T. Ocular dominance columns in the cat’s visual cortex. Neurosci. Abstr., 1975, 56.Google Scholar
  237. Sherman, S. M., Norton, T., and Casagrande, V. X- and Y-cells in the dorsal lateral geniculate nucleus of the tree shrew. Brain Res., 1975, 93, 152–157.Google Scholar
  238. Shkolnik-Yarros, E. G. Neurons of the cat’s retina. Vision Res., 1911a, 11, 7–26.Google Scholar
  239. Shkol’nick-Yarros, E. G. Asymmetrical dendritic fields of retinal ganglion cells. Neurofiziologiya, 1971b, 3, 301–306.Google Scholar
  240. Singer, W., and Bedworth, N. Inhibitory interaction between X and Y units in the cat lateral geniculate nucuelus. Brain Res., 1973, 49, 291–307.Google Scholar
  241. Singer, W., and Creutzfeldt, O. D., Reciprocal lateral inhibition of on- and off-center neurons in the lateral geniculate body of the cat. Exp. Brain Res., 1970, 10, 311.Google Scholar
  242. Smith, K. U. The acuity of the cat’s discrimination of visual form. Psychol Bull, 1934a, 31, 618–619.Google Scholar
  243. Smith, K. U., Visual discrimination in the cat. I. The capacity of the cat for visual figure discrimination. J. Genet. Psychol, 1934b, 44, 301–320.Google Scholar
  244. Smith, K. U., Visual discrimination in the cat. II. A further study of the capacity of the cat for visual figure discrimination. J. Genet Psychol, 1935, 45, 336–357.Google Scholar
  245. Smith, K. U. The effect of extirpation of the striate cortex upon visually controlled palpebral reactions, compensatory eye-movements, and placing reactions of the forelimbs in the cat. Psychol. Bull, 1936a, 33, 606–607.Google Scholar
  246. Smith, K. U. The postoperative effects of removal of the occipital cortex upon visual intensity discrimination in the cat. Am. J. Physiol, 1936b, 116, 145–146.Google Scholar
  247. Smith, K. U. The effect of removal of the occipital cortex upon visual acuity in the cat, as measured by oculo-cephalo-gyric responses. Psychol Bull, 1936c, 33, 754–7073.Google Scholar
  248. Smith, K. U., Visual discrimination in the cat. VI. The relation between pattern vision and visual acuity and the optic projection centers and the nervous system. J. Genet. Psychol, 1938, 53, 251–272.Google Scholar
  249. Smith, K. U., and Warkentin, J. The central neural organization of optic functions related to minimum visible acuity. J. Genet. Psychol, 1939, 55, 177–195.Google Scholar
  250. Snyder, M., and Diamond, I. T. The organization and function of the visual cortex in the tree shrew. Brain Behav. Evol, 1968, 1, 244–288.Google Scholar
  251. Snyder, M., Hall, W. C., and Diamond, I. T. Vision in tree shrews (Tupaia glis) after removal of striate cortex. Psychon. Sci, 1966, 6, 243.Google Scholar
  252. Snyder, M., Killackey, H., and Diamond, I. T., Color vision in the tree shrew after removal of posterior neocortex. J. Neurophysiol, 1969,32(4), 554–563.Google Scholar
  253. Spear, P. D., and Barbas, H. Recovery of pattern discrimination ability in rats receiving serial or one- stage visual cortex lesions.Brain Res., 1975, 94, 337–346.Google Scholar
  254. Spear, P. D, and Braun, J. J. Pattern discrimination following removal of visual neocortex in the cat. Exp. Neurol, 1969a, 25, 331–348.Google Scholar
  255. Spear, P. D., and Braun, J. J. Nonequivalence of normal and posteriorly neodecorticated rats on two brightness discrimination problems. J. Comp. Physiol Psychol, 1969b, 67, 235–239.Google Scholar
  256. Spekreijse, H., Van Norren, D. and Van den Berg, T. J. T. P. Flicker responses in monkey lateral geniculate nucleus and human perception of flicker. Proc. Natl Acad. Sci. (USA), 1971, 68, 2802.Google Scholar
  257. Spence, K., and Fulton, J. The effects of occipital lobectomy on vision in chimpanzee. Brain, 1936, 59, 35.Google Scholar
  258. Steinberg, R. H., Reid, M., and Lacy, P. L. The distribution of rods and cones in the retina of the cat. J. Comp. Neurol 1973, 148, 229–248.Google Scholar
  259. Stewart, D. L., and Riesen, A. H., Adult versus infant brain damage: Behavioral and electrophysiological effects of striatectomy in adult and neonatal rabbits. Adv. Psychobiol, 1972, 7, 171–211.Google Scholar
  260. Stone, J., Sampling properties of microelectrodes assessed in the cat’s retina. J. Neurophysiol, 1973, 36, 1071–1079.Google Scholar
  261. Stone, J. The naso-temporal division of the cat’s retina. J. Comp. Neurol, 1966, 126, 585–600.Google Scholar
  262. Stone, J., and Dreher, B. Projection of X- and Y-cells of the cat’s lateral geniculate nucleus to area 17 and 18 of visual cortex. J. Neurophysiol, 1973, 36, 551–567.Google Scholar
  263. Stone, J., and Fabian, M. Specialized receptive fields of the cat’s retina. Science, 1966, 152, 1277–1279.Google Scholar
  264. Stone, J., and Fukuda, Y., Pi’operties of cat retinal ganglion cells: A comparison of W-cells with X- and Y-cells. J. Neurophysiol, 1974a, 37, 722–748.Google Scholar
  265. Stone, J., and Fukuda, Y. The naso-temporal division of the cat’s retina re-examined in terms of Y-, X- and W-cells. J. Comp. Neurol, 1974b, 155, 377–394.Google Scholar
  266. Stone, J., and Hansen, S. M. The projection of the cat’s retina on the lateral geniculate nucleus. J. Comp. Neurol, 1966, 126, 601–624.Google Scholar
  267. Stone, J., and Hoffmann, P., Conduction velocity as a parameter in the organization of the afferent relay in the cat’s lateral geniculate nucleus. Brain Res., 1971, 32(2), 454–459.Google Scholar
  268. Stone, J., and Hoffmann, P., Very slow-conducting ganglion cells in the cat’s retina: A major, new functional type? Brain Res., 1972, 43, 610–616.Google Scholar
  269. Stone, J., and Holländer, H., Optic nerve axon diameters measured in the cat retina: Some functional considerations. Exp. Brain Res., 1971, 13, 498.Google Scholar
  270. Suzuki, H., and Kato, E., Binocular interaction at cat’s lateral geniculate body. J. Neurophysiol, 1966, 29, 909.Google Scholar
  271. Szentagothai, J. Neuronal and synaptic architecture of the lateral geniculate nucleus. In R. Jung (ed.). Handbook of Sensory Physiology, Vol. VI1/3:Central Processing of Visual Information, Part B: Visual Centers in the Brain. Springer-Verlag, New York, 1973, pp. 141–176.Google Scholar
  272. Talbot, S. A., and Marshall, W. H. Physiological studies on neural mechanisms of visual location and discrimination. Am. J. Ophthalmol, 1941, 1255–1264.Google Scholar
  273. Tansley, K. Vision in Vertebrates. Chapman & Hall, London, 1965.Google Scholar
  274. Taravella, C. L., and Clark, G. Discrimination of intermittent photic stimulation in normal and brain damaged cats. Exp. Neurol, 1963, 7, 282–293.Google Scholar
  275. TerBraak, J., and Van Vliet, A. Subcortical optokinetic nystagmus in the monkey. Psychiat. Neurol. Neurochirurg. (Amsterdam), 1963, 66, 277–283.Google Scholar
  276. TerBraak, J. W. G., Schenk, V. W. D., and Van Vliet, A. G. M. Visual reactions in a case of long-lasting and cortical blindness. J. Neurol. Neurosurg. Psychiatr., 1971, 140.Google Scholar
  277. Teuber, H. L., Battersby, W., and Bender, M. Visual Field Defects after Penetrating Missile Wounds of the Brain. Harvard University Press, Cambridge, Mass., 1960.Google Scholar
  278. Thompson, R. Retention of a brightness discrimination following neocortical damage in the rat. J. Comp. Physiol Psychol, 1960, 53, 212–215.Google Scholar
  279. Thuma, B. D., Studies on the diencephalon of the cat. I. The cyto-architecture of the corpus geniculatum laterale. J. Comp. Neurol, 1928, 46, 173–198.Google Scholar
  280. Tucker, T. J., Kling, A., and Scharlock, D. P. Sparing of photic frequency and brightness discriminations after striatectomy in neonatal cats. J. Neurophysiol, 1968, 31, 818–832.Google Scholar
  281. Tusa, R. The retinotopic organization of VI, V2 and V3 in the cat. Anat. Rec., 1975, 181, 497.Google Scholar
  282. Updyke, B. V. The patterns of projection of cortical areas 17, 18, and 19 onto the laminae of the dorsal lateral geniculate nucleus in the cat. J Comp. Neurol, 1975, 163, 377–396.Google Scholar
  283. Urbaitis, J. C., and Meikle, T. H., Jr., Relearning a dark-light discrimination by cats after cortical and collicular lesions.Exp. Neurol, 1968, 20, 295.Google Scholar
  284. von Freund, H. J., Lauff, D., and Grunewald, G. Binoculare Interabtion in Corpus geniculatum laterale der Katze. Pfluegers Arch. Ges. Physiol, 1967, 291, 85.Google Scholar
  285. Walls, G. The Vertebrate Eye and its Adaptive Radiation. Cranbrook Institute Scientific Bulletin 19, Cranbrook Press, Bloomfield Hills, N.J., 1942.Google Scholar
  286. Walls, G. L. The Lateral Geniculate Nucleus and Visual Histophysiology. University of California Publication in Physiology, Vol. 9, University of California Press, Berkeley, 1953.Google Scholar
  287. Ward, J. P., and Masterton, B. Encephalization and visual cortex in the tree shrew Brain Behav. Evol, 1970,5, 421–469.Google Scholar
  288. Ware, C. B., Casagrande, V. A., and Diamond, I. T. Does the acuity of the tree shrew suffer from removal of striate cortex? Brain Behav. Evol, 1972, 5, 18–29.Google Scholar
  289. Ware, C. B., Diamond, I. T., and Casagrande, V. A. Effects of ablating the striate cortex on a successive pattern discrimination: Further study of the visual system in the tree shrew (Tupaia glis). Brain Behav. Evol, 1974, 9, 264–279.Google Scholar
  290. Wässle, H., Levick, W. R., and Cleland, B. G. The distribution of the alpha-type of ganglion cells in the cat’s retina. J Comp. Neurol, 1975, 159, 419–438.Google Scholar
  291. Watkins, D. W., and Berkley, M. A. The orientation selectivity of single neurons in cat striate cortex. Exp. Brain Res., 1974, 19, 433–446.Google Scholar
  292. Weiskrantz, L. Contour discrimination in a young monkey with striate cortex ablation. Neuropsychologia, 1963, 1, 145–164.Google Scholar
  293. Weiskrantz, L., and Cowey, A. Striate cortex lesions and visual acuity of the rhesus monkey. J Comp. Physiol Psychol, 1963, 56, 225–231.Google Scholar
  294. Weiskrantz, L., and Cowey, A. Comparison of the effects of striate cortex and retinal lesions on visual acuity in the monkey. Science, 1967, 155, 104–106.Google Scholar
  295. Weiskrantz, L., and Cowey, A., Filling in the scotoma: A study of residual vision after striate cortex lesions in monkeys.Progr. Physiol Psychol, 1970, 3, 237–260.Google Scholar
  296. Weiskrantz, L., and Cowey, A. Effects of striate cortex removals on visual discrimination. Brain Res., 1971, 31, 376.Google Scholar
  297. Weiskrantz, L., Warrington, E. K., Sanders, M. D., and Marshall, J. Visual capacity in the hemianopic field following a restricted occipital ablation. Brain, 1974, 97, 709–728.Google Scholar
  298. Wetzel, A. B., Visual cortical lesions in the cat: A study of depth and pattern discrimination. J. Comp. Physiol Psychol, 1969, 68, 580–588.Google Scholar
  299. Wiesel, T. N., and Hubel, D. H. Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. J. Neurophysiol, 1966, 29, 1115–1156.Google Scholar
  300. Wiesel, T. N., Hubel, D. H., and Lam, D. M. K. Autoradiographic demonstration of ocular-dominance columns in the monkey striate cortex by means of transneuronal transport. Brain Res., 1974, 79, 273–279.Google Scholar
  301. Wiesenfeld, Z., and Komel, E. E. Receptive fields of single cells in the visual cortex of the hooded rat. Brain Res., 1975, 94,401–412.Google Scholar
  302. Wilson, M. E., and Cragg, B. G. Projections from the lateral geniculate nucleus in the cat and monkey. J Anat. (London), 1967.Google Scholar
  303. Wilson, M. E., and Toyne, M.J. Retino-tectal and cortico-tectal projections in Macaca mulatta. Anat. Ree., 1969, 163, 286.Google Scholar
  304. Wilson, P. D., and Stone, J. Evidence of W-cell input to the cat’s visual cortex via the laminae of the lateral geniculate nucleus.Brain Res., 1975, 92, 472–478.Google Scholar
  305. Winans, S. A. Visual form discrimination after removal of the visual cortex in cats.Science, 1967, 158, 944.Google Scholar
  306. Winans, S. S., Visual cues used by normal and visual-decorticate cats to discriminate figures of equal luminous flux. J. Comp. Physiol. Psychol, 1971, 74, 167–178.Google Scholar
  307. Winkler, C., and Potter, A. An Anatomical Guide to Experimental Researches on the Cat’s Brain. W. Versluys, Amsterdam, 1914.Google Scholar
  308. Wong-Riley, M. T. T., Changes in the dorsal lateral geniculate nucleus of the squirrel monkey after unilateral ablation of the visual cortex. J. Comp. Neurol, 1972, 146, 519–547.Google Scholar
  309. Wood, C. C., Spear, P. D., and Braun, J. J. Effects of sequential lesions of suprasylvian gyri and visual cortex on pattern discrimination in the cat. Brain Res., 1974, 66, 443–466.Google Scholar
  310. Wurtz, R. H. Visual receptive fields of striate cortex neurons in awake monkeys. J. Neurophysiol, 1969, 32(3), 121–142.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Mark Berkley
    • 1
  1. 1.Department of PsychologyFlorida State UniversityTallahasseeUSA

Personalised recommendations