Advertisement

Visual System: Superior Colliculus

  • Michael E. Goldberg
  • David Lee Robinson

Abstract

The primary visual brain of lower vertebrates is the optic lobe or optic tectum, an organ which receives visual input and helps generate visually guided behavior. The evolution of the cerebral cortex did not result in the elimination of the tectum, but instead, as the superior colliculus, the visual organ in the midbrain continues to play some function in the organization of visually motivated behavior (Sprague et al, 1972; Ingle, 1973). This chapter will discuss the anatomy and physiology of the mammalian superior colliculus, the effects of collicular lesions on behavior, and the various current hypotheses of the role of the superior colliculus in visually motivated behavior.

Keywords

Receptive Field Superior Colliculus Ground Squirrel Striate Cortex Tree Shrew 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahams, V. C., and Rose, P. K. Projections of extraocular, neck muscle, and retinal afferents to the superior colliculus in the cat: Their connections to the cells of origin of the tectospinal tract.J. Neurophysiol, 1975a, 38, 10–18.Google Scholar
  2. Abrahams, V. C., and Rose, P. K. Velocity and displacement characteristics of passive eye movement which initiate unit discharges in the superior colliculus. J. Physiol. (London), 1975b, 246, 101 p.Google Scholar
  3. Adamük, E. Über die Innervation der Augenbewegungen. Zentr. Med. Wiss., 1870, 8, 65.Google Scholar
  4. Akert, K. Der visueUe GreifreHex. Helv. Physiol Acta, 1949, 7, 112–134.Google Scholar
  5. Altman, J. Some fiber projections to the superior colliculus in the cat. J. Comp. Neurol, 1962, 119, 77–95.Google Scholar
  6. Altman, J., and Carpenter, M. B. Fiber projections of the superior colliculus in the cat. J. Comp. Neurol, 1961, 116, 157–177.Google Scholar
  7. Anderson, K. V., and Symmes, D. The superior colliculus and higher visual functions in the monkey. Brain Res., 1969, 13, 37–52.Google Scholar
  8. Anderson, M. E., Yoshida, M., and Wilson, V. J. Influence of superior colliculus on cat neck motoneu­rons. J.Neurophysiol, 1971, 34, 898–907.Google Scholar
  9. Angaut, P. The fastigio-tectal projections: An anatomical experimental study. Brain Res., 1969, 13, 186–189.Google Scholar
  10. Apter, J. T. Projection of the retina on superior colliculus of cats. J. Neurophysiol., 1945, 8, 123–134.Google Scholar
  11. Apter, J. T. Eye movements following strychninization of the superior colliculus of cats. J. Neurophysiol., 1946, 9, 73–86.Google Scholar
  12. Astruc, J. Corticofugal connections of area 8 (frontal eye field) in Macaca mulatta. Brain Res., 1911,33, 241–256.Google Scholar
  13. Benevento, L. A., and Fallon, J. H. The ascending projections of the superior colliculus in the rhesus monkey (Macaca mulatta). J. Comp. Neurol, 1975, 160, 339–362.Google Scholar
  14. Berlucchi, G., Sprague, J. M., Levy, J., and DiBerardino, A. C. Pretectum and superior colliculus in visually guided behavior and in flux and form discrimination in the cat.J. Comp. Physiol. Psychol., 1972, 78, 123–172.Google Scholar
  15. Berman, N., and Cynader, M. Comparison of receptive-field organization of the superior colliculus in Siamese and normal cats.J. Physiol. (London), 1972, 224, 363–389.Google Scholar
  16. Berman, N., and Cynader, M. Receptive fields in cat superior colliculus after visual cortex lesions. J. Physiol (London), 1975, 245, 261–270.Google Scholar
  17. Berman, N., Blakemore, C., and Cynader, M. Binocular interaction in the cat’s superior colliculus. J. Physiol (London), 1975, 246, 595–615.Google Scholar
  18. Bisti, S., Maffei, L., and Piccolino, M. Visuovestibular interactions in the cat superior colliculus. J. Neurophysiol, 1974, 57, 146–155.Google Scholar
  19. Bizzi, E., Kalil, R. E., and Tagliasco, V. Eye-head coordination in monkeys: Evidence of centrally patterned organization. Science, 1971, 173, 452–454.Google Scholar
  20. Bizzi, E., Kalil, R. E., Morasso, P., and Tagliasco, V. Central programming and peripheral feedback during eye-head coordination in monkeys. Bibl Ophthalmol, 1972, 82, 220–232.Google Scholar
  21. Blake, L. The effect of lesions of the superior colliculus on brightness and pattern discrimination in the cat. J.Comp. Physiol Psychol, 1959, 52, 272–278.Google Scholar
  22. Boycott, B. B., and Wässle, H. The morphological types of ganglion cells of the domestic cat’s retina. J. Physiol (London), 1974, 240, 397–419.Google Scholar
  23. Bunt, A. H., Hendrickson, A. E., Lund, J. S., Lund, R. D., and Fuchs, A. F. Monkey retinal ganglion cells: Morphometric analysis and tracing of axonal projections, with a consideration of the peroxidase technique. J. Comp. Neurol, 1975, 164, 265–286.Google Scholar
  24. Butter, C. M. Effect of superior colliculus, striate and prestriate lesions on visual sampling in rhesus monkeys. J. Comp. Physiol Psychol, 1974, 87, 905–917.Google Scholar
  25. Carpenter, M. B., and Pierson, R. J. Pretectal region and the pupillary light reflex: An anatomical analysis in the monkey. J. Comp. Neurol, 1973, 149, 271–300.Google Scholar
  26. Casagrande, V. A., and Diamond, L T. Ablation study of the superior colliculus in the tree shrew (Tupaia glis). J. Comp. Neurol, 1974, 156, 207–238.Google Scholar
  27. Casagrande, V. A., Harting, J. K., Hall, W. C., Diamond, I. T., and Martin, G. F. Superior colliculus of the tree shrew: A structural and functional subdivision into superficial and deep layers. Science, 1972, 177, 444–447.Google Scholar
  28. Clare, M. H., Landau, W. M., and Bishop, G. H. The relationship of optic nerve liber groups activated by electrical stimulation of the consequent central postsynaptic events. Exp. Neurol, 1969, 24, 400–420.Google Scholar
  29. Cleland, B. G., and Levick, W. R. Brisk and sluggish concentrically organized ganglion cells in the cat’s retina. J.Physiol (London), 1974b, 240, 421–456.Google Scholar
  30. Cleland, B. G., and Levick, W. R. Properties of rarely encountered types of ganglion cells in the cat’s retina and an overall classification. J.Physiol (London), 1974b, 240, 457–492.Google Scholar
  31. Cleland, B. G., Dubin, M. W., and Levick, W. R. Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus. J. Physiol (London), 1971, 217, 473–496.Google Scholar
  32. Cleland, B.C., Morstyn, R., Wagner, H. G., and Levick, W. R. Rarely encountered receptive field types in the LGN of the cat. Assoc. Res. Vision Ophthal. Spring Meeting, 1975.Google Scholar
  33. Cohen, B., and Henn, V. Unit activity in the pontine reticular formation associated with eye move­ments.Brain Res., 1972, 46, 403–410.Google Scholar
  34. Cohen, B., and Komatsuzaki, A. Eye movements induced by stimulation of the pontine reticular formation: Evidence for integration in oculomotor pathways. Exp. Neurol, 1972, 36, 101–117.Google Scholar
  35. Cooper, S., and Fillenz, M., Afferent discharges in response to stretch from the extraocular muscles of the cat and monkey and the innervation of these muscles. J. Physiol (London), 1955, 127, 400–413.Google Scholar
  36. Cooper, S., Daniel, P. M., and Whitteridge, D. Nerve impulses in the brainstem of the goat: Responses with long latencies obtained by stretching the extrinsic eye muscles. J. Physiol (London), 1953, 120, 491–513.Google Scholar
  37. Cynader, M., and Berman, N. Receptive-field organization of monkey superior colliculus. Neurophy- siol, 1972, 55, 187–201.Google Scholar
  38. Denny-Brown, D. The midbrain and motor integration. Proc. Roy. Soc. Med., 1962, 55, 527–538.Google Scholar
  39. Dräger, U. C., and Hubel, D. H. Responses to visual stimulation and relationship between visual, auditory and somatosensory inputs in mouse superior colliculus. J. Neurophysiol., 1975, 38, 690–713.Google Scholar
  40. Dreher, B., and Hoffman, K.-P. Properties of excitatory and inhibitory regions in the receptive fields of single units in the cat’s superior colliculus.Exp. Brain Res., 1973, 16, 333–353.Google Scholar
  41. Edwards, S. B., Rosenquist, A. C., and Palmer, L. A. An autoradiographic study of ventral lateral geniculate projections in the cat. Brain Res., 1974, 72, 282–287.Google Scholar
  42. Enroth-Cugell, C., and Robson, J. G. The contrast sensitivity of ganglion cells in the cat. J. Physiol (London), 1966, 187, 517–552.Google Scholar
  43. Escobar, A., and de Cardenas, M. J. On the connections between the superior colliculus and the inferior olivary nucleus: An experimental study in the cat. Bol. Estud. Med. Biol., 1968, 25, 281–290.Google Scholar
  44. Feldon, S., Feldon, P., and Kruger, L. Topography of the retinal projection upon the superior colHculus of the cat. Vision Res., 1970, 10, 135–143.Google Scholar
  45. Fillenz, M. Responses in the brainstem of the cat to stretch of extrinsic ocular muscles.J. Physiol. (London), 1955, 128, 182–199.Google Scholar
  46. Fischman, M. W., and Meikle, T. H., Jr. Visual intensity discrimination in cats after serial tectal and cortical lesions. J. Comp. Physiol. Psychol, 1965, 59, 193–201.Google Scholar
  47. Fukuda, Y. Receptive field organization of cat optic nerve fibers with special reference to conduction velocity. Vision Res., 1971, 11, 209–226.Google Scholar
  48. Fukuda, Y., and Stone, J. Observations on the retinal input to the pupülo-constrictor reflex in the cat. Proc.Amt. Physiol Pharmacol Soc., 1973, 4, 138–139.Google Scholar
  49. Garey, L. J., Jones, E. G., and Powell, T. P. S. Interrelationships of striate and extrastriate cortex with the primary relay sites of the visual pathway. J. Neurol Neurosurg. Psychiat, 1968, 31, 135–157.Google Scholar
  50. Goldberg, M. E., and Wurtz, R. H. Effects of eye movement and visual stimulus on units in monkey superior colliculus. Fed. Proc., 1970, 29, 453.Google Scholar
  51. Goldberg, M. E., and Wurtz, R. H. Activity of superior colliculus in behaving monkey. 1. Visual receptive fields of single neurons. J. Neurophysiol., 1972a, 35, 542–559.Google Scholar
  52. Goldberg, M. E., and Wurtz, R. H. Activity of superior colliculus in behaving monkey. 11. Effectoi attention on neuronal responses. J. Neurophysiol, 1972b, 35, 560–574.Google Scholar
  53. Gordon, B. Receptive fields in deep layers of cat superior colliculus.J. Neurophysiol, 1973, 36, 157–178.Google Scholar
  54. Graybiel, A. M. Some fiber pathways related to the posterior thalamic region in the cat.Brain Behav. Evol, 1972a, 6, 363–393.Google Scholar
  55. Graybiel, A. M. Some extrageniculate visual pathways in the cat. Invest. Opthalmol, 1912b, 11, 322–332.Google Scholar
  56. Graybiel, A. M. Visuo-cerebellar and cerebello-visual connections involving the ventral lateral genicu­late nucleus. Exp. Brain Res., 1974, 20, 303–306.Google Scholar
  57. Graybiel, A. M. Anatomical organization of retinotectal afferents in the cat: An autoradiographic study, Brain Res., 1975, 96, 1–23.Google Scholar
  58. Hamilton, B. L. Projections of the nuclei of the periaqueductal gray matter in the cat. J. Comp. Neurol, 1973, 152, 45–58.Google Scholar
  59. Harting, J. K., Hall, W. G., Diamond, I. T., and Martin, G. F. Anterograde degeneration study of the superior colliculus in Tupaia glis:Evidence for a subdivision between superficial and deep layers. J Comp. Neurol, 1973, 148, 361–386.Google Scholar
  60. Harutiunian-Kozak, B., Kozak, W., and Dec, K. Visually-evoked potentials and single unit activity in the superior colliculus of the cat. Acta Neurobiol Exp., 1970, 30, 211–232.Google Scholar
  61. Hayaishi, Y. Recurrent collateral inhibition of visual cortical cells projecting to superior colliculus in cats. Vision Res., 1969, 9, 1367–1380.Google Scholar
  62. Hayaishi, Y., Nagata, T., Tamaki, Y., and Iwama, K. Binocular interaction in the superior colliculus of chronic cats. Exp. Brain Res., 1973, 18, 531–547.Google Scholar
  63. Hecaen, H., and de Ajuriaguerra, J. Balint’s syndrome (psychic paralysis of visual fixation) and its minor forms. Brain, 1954, 77, 373–400.Google Scholar
  64. Hendrickson, A., Wilson, M. E., and Toyne, M. J. The distribution of optic nerve fibers in Macaca mulatta. Brain Res., 1970, 23, 425–427.Google Scholar
  65. Hess, W. R., Bürgi, S., and Bucher, V. Motorische Funktion des Tectal- und Tegmentalgebietes. Psychiat. Neurol, 1946, 112, 1–52.Google Scholar
  66. Hoffman, K.-P. The retinal input to the superior colliculus in the cat. Invest. Ophthalmol, 1972, 11, 467–470.Google Scholar
  67. Hoffman, K.-P. Conduction velocity in pathways from retina to superior colliculus in the cat: A correlation with receptive-field properties. J. Neurophysiol, 1973, 36, 409–424.Google Scholar
  68. Hoffman, K.-P., and Dreher, B. The spatial organization of the excitatory region of receptive fields in the cat’s superior colliculus. Exp. Brain Res., 1973, 16, 354–370.Google Scholar
  69. Hoffman, K.-P., and Straschill, M. Influences of corticotectal and intertectal connections on visual responses in the cat’s superior colliculus. Exp. Brain Res., 1971, 12, 120–131.Google Scholar
  70. Holländer, H. On the origin of the corticotectal projections in the cat. Exp. Brain Res., 1974, 21, 433–439.Google Scholar
  71. Horn, G. Novelty, attention and habituation. In C. R. Evans and T. B. Mulholland (eds.), Attention in Neurophysiology.Appleton-Century-Crofts, New York, 1969, pp. 230–246.Google Scholar
  72. Horn, G., and Hill, R. H. Responsiveness to sensory stimulation of units in the superior colliculus and subjacent tectotegmental regions of the rabbit. Exp. Neurol., 1966, 14, 199–223.Google Scholar
  73. Hubel, D. H., and Wiesel, T. N. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol., 1965, 28, 229–289.Google Scholar
  74. Hubel, D. H., and Wiesel, T. N. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. (London), 1968, 195, 215–243.Google Scholar
  75. Hubel, D. H., LeVay, S., and Wiesel, T. N. Mode of termination of retinotectal fibers in macaque monkey: An autoradiographic study, Brain Res., 1975, 96, 25–40.Google Scholar
  76. Humphrey, N. K. Responses to visual stimuli of units in the superior colliculus of rats and monkeys. Exp. Neurol., 1968, 20, 312–340.Google Scholar
  77. Ikeda, H., and Wright, M. J. The outer disinhibitory surround of the retinal ganglion cell receptive field. J.Physiol. (London), 1972, 226, 511–544.Google Scholar
  78. Ingle, D. Evolutionary perspectives on the function of the optic tectum. Brain Behav. Evol, 1973, 8, 211–237.Google Scholar
  79. Jane, J. A., Levey, N., and Carlson, N.J. Tectal and cortical function in vision.Exp. Neurol, 1972, 35, 61–77.Google Scholar
  80. Jassik-Gerschenfeld, D. Activity of somatic origin evoked in the superior colliculus of the cat.Exp. Neurol., 1966, 16, 104–118.Google Scholar
  81. Kadoya, S., Wolin, L. R., and Massopust, L. C., Jr. Photically evoked unit activity in the tectum opticum of the squirrel monkey.J. Comp. Neurol, 1971a, 142, 495–508.Google Scholar
  82. Kadoya, S., Wolin, L. R., and Massopust, L. C., Jr. Collicular unit responses to monochromatic stimulation in squirrel monkey.Brain Res., 1971b, 32, 251–254.Google Scholar
  83. Kadoya, S., Massopust, L. C., Jr., and Wolin, L. R. Striate cortex-superior colliculus projections in squirrel monkey. Exp. Neurol, 1971c, 32, 98–110.Google Scholar
  84. Kanaseki, T., and Sprague, J. M. Anatomical organization of pretectal and tectal laminae in the cat.J. Comp. Neurol, 1974, 158, 319–337.Google Scholar
  85. Kawamura, K., and Brodal, A. The tectopontine projection in the cat: An experimental anatomical study with comments on pathways for teleceptive impulses to the cerebellum. J. Comp. Neurol, 1973, 149, 371–390.Google Scholar
  86. Kawamura, K., Brodal, A., and Hoddevik, G. The projection of the superior colliculus onto the reticular formation of the brain stem: An experimental anatomical study in the cat. Exp. Brain Res., 1974a, 19, 1–19.Google Scholar
  87. Kawamura, S., Sprague, J. M., and Niimi, K. Gorticofugal projections from the visual cortices to the thalamus, pretectum and superior colliculus in the cat. J. Comp. Neurol., 1974b, 158, 339–362.Google Scholar
  88. Keating, E. G. Impaired orientation after primate tectal lesions. Brain Res., 1974, 67, 538–541.Google Scholar
  89. Keller, E. L. Participation of medial pontine reticular formation in eye movement generation in monkey. J.Neurophysiol, 1974, 37, 316–332.Google Scholar
  90. Kuhlenbeck, H., and Miller, R. N. The pretectal region of the rabbit’s brain. J. Comp. Neurol, 1942, 76, 323–365.Google Scholar
  91. Kuypers, H. G. J. M. Discussion. In V. B. Mountcastle (ed.), Cerebral Dominance and Interhemispheric Relations.1962, pp. 114–116. Johns Hopkins Press, Baltimore.Google Scholar
  92. Kuypers, H. G. J. M., and Lawrence, D. G. Cortical projections to the red nucleus and the brain stem in the rhesus monkey. Brain Res., 1967, 4, 151–188.Google Scholar
  93. Lane, R. H., Allman, J. M., and Kaas, J. H. Representation of the visual field in the superior coUiculus of the gray squirrel (Sciums carolinensis)and the tree shrew (Tupaia glis). Brain Res., 1971, 26, 277–292.Google Scholar
  94. Lane, R. H., Allman, J. M., Kaas, J. H., and Miezin, F. M. The visuotopic organization of the superior colliculus of the owl monkey (Aotus trivirgatus)and the bush baby (Galago senegalensis). Brain Res., 1973, 60, 335–349.Google Scholar
  95. Lane, R. H., Kaas, J. H., and Allman, J. M. Visuotopic organization of the superior colliculus in normal and siamese cats. Brain Res., 1974, 70, 413–430.Google Scholar
  96. Lund, R. D. Synaptic patterns in the superficial layers of the superior colliculus of the monkey. Macaca mulatta. Exp. Brain Res., 1972, 15, 194–211.Google Scholar
  97. Luria, A. R. Disorders of “simultaneous perception” in a case of bilateral occipito-parietal brain injury. Brain, 1959, 82, 437–449.Google Scholar
  98. Luschei, E. S., and Fuchs, A. F. Activity of brain stem neurons during eye movements of alert monkeys. J. Neurophysiol, 1972, 35, 445–461.Google Scholar
  99. Manni, E., Falmieri, G., and Marini, R. Mesodiencephalic representation of the eye muscle propriocep­tion. Exp. Neurol, 1972, 37, 412–421.Google Scholar
  100. Marchiafava, P. L., and Pepeu, G. The responses of units in the superior colliculus of the cat to a moving visual stimulus. Experienüa, 1966, 22, 51–53.Google Scholar
  101. Masland, R. H., Chow, K. L., and Stewart, D. L. Receptive-field characteristics of superior colliculus neurons in the rabbit. J. Neurophysiol, 1971, 148–156.Google Scholar
  102. Mathers, L. H. Tectal projection to the posterior thalamus of the squirrel monkey. Brain Res., 1971, 55, 295–298.Google Scholar
  103. McIlwain, J. T. Topographic relationships in projection from striate cortex to superior colliculus of the cat. J.Neurophysiol, 1973b, 36, 690–701.Google Scholar
  104. McIlwain, J. T. Retinotopic fidelity of striate cortex-superior colliculus interactions in the cat. J. Neurophysiol, 1973b, 36, 702–710.Google Scholar
  105. McIlwain, J. T. Visual receptive fields and their images in superior colliculus of the cat. J Neurophysiol, 1975, 38, 219–230.Google Scholar
  106. McIlwain, J. T., and Buser, P. Receptive fields of single cells in the cat’s superior colliculus. Exp. Brain Res., 1968, 5, 314–325.Google Scholar
  107. McIlwain, J. T., and Fields, H. L. Interactions of cortical and retinal projections on single neurons of the cat’s superior colliculus. J. Neurophysiol, 1971, 763–772.Google Scholar
  108. Mehler, W. R. Some neurological species differences—a posteriori. Ann. N.Y. Acad. Sci, 1969, 167, 424–468.Google Scholar
  109. Michael, C. R. Visual receptive fields of single neurons in superior colliculus of the ground squirrel. J. Neurophysiol, 1972a, 35, 815–832.Google Scholar
  110. Michael, C. R. Functional organization of cells in superior colliculus of the ground squirrel. J. Neurophysiol, 1972b, 35, 833–846.Google Scholar
  111. Möhler, G. W., and Wurtz, R. H. Organization of monkey superior colliculus: Intermediate layer cells discharging before eye movements. J. Neurophysiol, 1976a, 39, 722–744.Google Scholar
  112. Möhler, G. W., and Wurtz, R. H. Role of striate cortex and superior colliculus in the visual guidance of saccadic eye movements in the monkey. J. Neurophysiol, 1976a, 40, 74–94.Google Scholar
  113. Moore, R. Y., and Goldberg, J. M. Ascending projections of the inferior colliculus in the cat. J. Comp. Neurol, 1963, 129, 109–135.Google Scholar
  114. Moore, R. Y., and Goldberg, J. M. Projections of the inferior colliculus in the monkey. Exp. Neurol, 1966, 14, 429–438.Google Scholar
  115. Myers, R. E. Projections of superior colliculus in monkey. Anat. Ree., 1963a, 145, 264.Google Scholar
  116. Myers, R. E. Cortical projections to midbrain in monkey. Anat. Ree., 1963b, 145, 337–338.Google Scholar
  117. Nauta, W. J. H., and Kuypers, H. G. J. M. Some ascending pathways in the brainstem reticular formation. In H. H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Noshay, and R. T. Costello (eds.), Reticular Formation of the Brain.Little, Brown, Boston, 1958, pp. 3–30.Google Scholar
  118. Niimi, K., Mild, M., and Kawamura, S. Ascending projections of the superior colliculus in the cat. Okyinms Fol Anat. Jap., 1970, 47, 269–287.Google Scholar
  119. Nyberg-Hansen, R. The location and termination of tectospinal fibers in the cat. Exp. Neurol, 1964, 9, 212–227.Google Scholar
  120. Olszewski, J., and Baxter, D. Cytoarchetecture of the Human Brain Stem.Karger, Basel, 1954.Google Scholar
  121. Palmer, L. A., and Rosenquist, A. C. Visual receptive fields of single striate cortical units projecting to the superior colliculus in the cat. Brain Res., 1974, 67, 27–42.Google Scholar
  122. Pasik, T., Pasik, P., and Bender, M. B. The superior colliculi and eye movements. Arch. Neurol, 1966, 15, 420–436.Google Scholar
  123. Paula-Barbosa, M. M., and Sousa-Pinto, A. Auditory cortical projections to the superior colliculus in the cat. Brain Res., 1973, 30, 47–61.Google Scholar
  124. Peterson, B. W., Anderson, M. E., Fillion, M., and Wilson, V. J. Responses of reticulospinal neurons to stimulation of the superior colliculus. Brain Res., 1971, 55, 495–498.Google Scholar
  125. Powell, E. W., and Hatton, J. B. Projections of the inferior colliculus in cat. J. Comp. Neurol, 1969, 136, 183–192.Google Scholar
  126. Precht, W., Schwindt, P. C., and Magherini, P. C. Tectal influences on cat ocular motoneurons. Brain Res., 1974, 82, 27–40.Google Scholar
  127. Ramon y Cajal, S. Histologie du Systeme de l‘Homine et des Vertebres, Vol. 2. A. Maloine, Paris, 1911.Google Scholar
  128. Richard, D., Thiery, J.-C., and Buser, P. Cortical control of the superior coUiculus in awake non- paralyzed cats. Brain Res., 1973, 58, 524–528.Google Scholar
  129. Rieger, P., and Straschill, M. The effect of body tilt upon the transfer and output function of the cat’s superior colliculus. Pflügers Arch., 1973, 344, 187–193.Google Scholar
  130. Rioch, D. M. Studies on the diencephalon of Carnivora. Part 1. The nuclear configuration of the dog and cat. J. Comp. Neurol., 1929, 49, 1–119.Google Scholar
  131. Rizzolatti, G., Tradardi, V., and Camarda, R. Unit responses to visual stimuli in the cat’s superior colliculus after removal of the visual cortex. Brain Res., 1973, 24, 336–339.Google Scholar
  132. Rizzolatti, G., Camarda, R., Grupp, L. A., and Pisa, M. Inhibitory effect of remote visual stimuli on visual responses on cat superior colliculus: Spatial and temporal factors.J. Neurophysiol., 1975, 37, 1262–1275.Google Scholar
  133. Robinson, D. A. Eye movements evoked by collicular stimulation in the alert monkey. Vision Res., 1972, 12, 1795–1808.Google Scholar
  134. Robinson, D. L., and Jarvis, C. D. Superior colliculus neurons studied during head and eye movements of the behaving monkey.J.Neurophysiol., 1974, 37, 933–940.Google Scholar
  135. Robinson, D. L., and Wurtz, R. H. Use of an extraretinal signal by monkey superior colliculus neurons to distinguish real from self-induced stimulus movement. J.Neurophysiol, 1976, 39, 852–870.Google Scholar
  136. Rose, J. E., and Woolsey, C. N. Cortical connections and functional organization of the thalamic auditory system in the cat. In H. F. Harlow and C. N. Woolsey (eds)., Biological and Biochemical Bases of Behavior.University of Wisconsin Press, Madison, Wis., 1958, pp. 127–150.Google Scholar
  137. Rosenquist, A. C., and Palmer, L. A. Visual receptive fields of cells of the superior colliculus after cortical lesions in the cat. Exp. Neurol, 1971, 55, 629–652.Google Scholar
  138. Rosvold, H. E., Mishkin, M., and Szwarcbart, M. K. Effects of subcortical lesions in monkeys on visual- discrimination and single alternation performance. J. Comp. Physiol Psychol, 1958, 51, 437–444.Google Scholar
  139. Schaeffer, K.-P. Mikroableitungen in Tectum opticum des frie beweglichen Kaninchens. Arch. Psychiat. Ges. Neurol, 1966, 208, 120–146.Google Scholar
  140. Schaeffer, K.-P. Neuronal elements of the orienting response: Microrecordings and stimulation experiments in rabbits. Bibl Ophthalmol, 1972, 82, 139–148.Google Scholar
  141. Schiller, P. H. The role of the monkey superior colliculus in eye movement and vision. Invest. Opthalmol, 1972, 11, 451–460.Google Scholar
  142. Schiller, P. H., and Koerner, F. Discharge characteristics of single units in superior colliculus of the alert rhesus monkey. J Neurophysiol, 1971, 34, 920–936.Google Scholar
  143. Schiller, P. H., and Stryker, M. P. Single-unit recording and stimulation in superior colliculus of the alert rhesus monkey. J.Neurophysiol, 1972, 35, 915–924.Google Scholar
  144. Schiller, P. H., Stryker, M. P., Cynader, M., and Berman, N. Response characteristics of single cells in the monkey superior colliculus following ablation or cooling of visual cortex. J Neurophysiol, 1974, 37, 181–194.Google Scholar
  145. Schneider, G. E. Two visual systems: Brain mechanisms for localization and discrimination are dissociated by tectal and cortical lesions. Science, 1969, 163, 895–902.Google Scholar
  146. Sherman, S. M. Visual fields of cats with cortical and tectal lesions. Science, 1974, 185, 355–357.Google Scholar
  147. Sparks, D. L. Response properties of eye movement-related neurons in the monkey superior colliculus. Brain Res., 1975, 90, 147–152.Google Scholar
  148. Spatz, W. B., Tigges, J., and Tigges, M. Subcortical projections, cortical association and some intrinsic interlaminar connections of the striate cortex in the squirrel monkey (Saimirl). J. Comp. Neurol, 1970, 140, 155–174.Google Scholar
  149. Sprague, J. M. Corticofugal projections to the superior colliculus in the cat. Anat. Ree., 1963, 145, 288.Google Scholar
  150. Sprague, J. M. Interaction of cortex and superior colliculus in mediation of visually guided behavior in the cat. Science, 1966, 153, 1544–1547.Google Scholar
  151. Sprague, J. M. Mammalian tectum: Intrinsic organization, afferent inputs and integrative mechanisms. Anatomical substrate. Neurosci. Res. Progr. Sensorimotor Function the Midbrain Tectum, 1975, 13, 204–213.Google Scholar
  152. Sprague, J. M., and Meikle, T. H., Jr. The role of the superior colliculus in visually guided behavior. Exp. Neurol, 1965, 11, 115–146.Google Scholar
  153. Sprague, J. M., Levitt, M., Robson, K., Liu, C. N., Stellar, E., and Chambers, W. W. A neuroanatomical and behavioral analysis of the syndromes resulting from midbrain lemniscal and reticular lesions in the cat. Arch. Ital Biol, 1963, 101, 225–295.Google Scholar
  154. Sprague, J. M., Marchiafava, P. L., and Rizzolatti, G. Unit responses to visual stimuli in the superior colliculus of the unanesthetized, mid-pontine cat. Arch. Ital Biol, 1968, 106, 169–193.Google Scholar
  155. Sprague, J. M., Berlucchi, G., and Rizzolatti, G. The role of the superior colliculus and pretectum in vision and visually guided behavior. In R. Jung (ed.), Handbook of Sensory Physiology, Vol. VIII/B. Springer-Verlag, Berlin, 1972, pp. 27–101.Google Scholar
  156. Stein, B. E., and Arigbede, M. O. Unimodal and multimodal response properties of neurons in the cat’s superior colliculus. Exp. Neurol, 1972, 36, 179–196.Google Scholar
  157. Stein, B. E., Magalhaes-Castro, B., and Kruger, L. Superior colliculus: Visuotopic-somatotopic overlap. Scieme, 1975, 189, 224–226.Google Scholar
  158. Sterling, P. Receptive fields and synaptic organization of the superficial gray layer of the cat superior colliculus. Vision Res. Suppl. No. 3,1971, 309–328.Google Scholar
  159. Sterling, P., and Wickelgren, B. G. Visual receptive fields in the superior colliculus of the cat. J. Neurophysiol, 1969, 32, 1–15.Google Scholar
  160. Stewart, D. L., Birt, D., and Towns, L. C. Visual receptive-field characteristics of superior colliculus neurons after cortical lesions in the rabbit. Vision Res., 1973, 13, 1965–1977.Google Scholar
  161. Stone, J., and Hoffman, K.-P. Very slow-conducting ganglion cells in the cat’s retina: A major new, functional type? Brain Res., 1972, 43, 610–616.Google Scholar
  162. Straschill, M., and Hoffman, K.-P. Functional aspects of localization in the cat’s tectum opticum. Brain Res., 1969, 13, 274–283.Google Scholar
  163. Straschill, M., and Hoffman, K.-P. Activity of movement sensitive neurons of the cat’s tectum opticum during spontaneous eye movements. Exp. Brain Res., 1970, 11, 318–326.Google Scholar
  164. Straschill, M., and Rieger, P. Eye movements evoked by focal stimulation of the cat’s superior colliculus. Brain Res., 1973, 59, 211–227.Google Scholar
  165. Straschill, M., and Taghavy, A. Neuronale Reaktionen im Tectum opticum der Katze auf bewegte und stationäre Lichtreize. Exp. Brain Res., 1967, 3, 353–367.Google Scholar
  166. Stryker, M. P., and Schiller, P. H. Eye and head movements evoked by electrical stimulation of monkey superior colliculus. Exp. Brain Res., 1975, 23, 103–112.Google Scholar
  167. Syka, J., and Radii-Weiss, T. Electrical stimulation of the tectum in freely moving cats. Brain Res., 1971, 28, 567–572.Google Scholar
  168. Thompson, R., and Myers, R. E. Brainstem mechanisms underlying visually guided responses in the rhesus monkey.J. Comp. Physiol. Psychol, 1971, 74, 479–512.Google Scholar
  169. Toyama, K., Matsunami, K., and Ohno, T. Antidromic identification of association, commissural and corticofugal efferent cells in cat visual cortex. Brain Res., 1969, 14, 513–517.Google Scholar
  170. Tyler, H. R. Abnormalities of perception with defective eye movements. Cortex, 1968, 4, 154–171.Google Scholar
  171. Updyke, B. V. Characteristics of unit responses in superior colliculus of the cebus monkey.J. Neurophysiol, 1974, 37, 896–909.Google Scholar
  172. Viktorov, I. V. Neuronal structure of anterior corpora bigemina in insectivora and rodents. Arkh. Anat. Gistol Embriol, 1966, 51, 82–89.Google Scholar
  173. Viktorov, I. V. Neuronal structure of superior coUiculi of corpora quadrigemina. Arkh. Anat. Gistol Embnol, 1968, 54, 45–55.Google Scholar
  174. Wickelgren, B. G., and Sterling, P. Influence of visual cortex on receptive fields in the superior colliculus of die cat. J. Neurophysiol, 1969, 32, 16–23.Google Scholar
  175. Wilson, P. D., and Stone, J. Evidence of W-cell input to the cat’s visual cortex via the C laminae of the lateral geniculate nucleus. Brain Res., 1975, 92, 472–478.Google Scholar
  176. Wilson, M. E., and Toyne, M. J. Retino-tectal and cortico-tectal projections in Macaca mulatta. Brain Res., 1970, 24, 395–406.Google Scholar
  177. Winterkorn, J. M. S. Similar deficits in visual learning by cats with lesions of the frontal cortex or of the superior colliculus. Brain Res., 1975, 83, 163–168.Google Scholar
  178. Wood, B. S. Monocular releaming of a dark-light discrimination by cats after unilateral cortical and collicular lesions. Brain Res., 1975, 83, 156–162.Google Scholar
  179. Wurtz, R. H., and Goldberg, M. E. Superior colliculus cell responses related to eye movements in awake monkeys. Science, 1971, 171, 82–84.Google Scholar
  180. Wurtz, R. H., and Goldberg, M. E. Activity of superior colliculus in behaving monkey. III. Cells discharging before eye movements.J. Neurophysiol, 1972a, 35, 575–586.Google Scholar
  181. Wurtz, R. H., and Goldberg, M. E. Activity of superior colliculus in behaving monkey. IV. Effects of lesions on eye movements. J. Neurophysiol, 1972b, 35, 587–596.Google Scholar
  182. Wurtz, R. H., and Goldberg, M. E. The primate superior colliculus and the shift of visual attention. Invest, Ophthalmol, 1972c, 11, 441–450.Google Scholar
  183. Wurtz, R. H., and Möhler, C. W. Organization of monkey superior colliculus: Enhanced visual response of superficial layer cells. J. Neurophysiol, 1976a, 39, 745–765.Google Scholar
  184. Wurtz, R. H., and Möhler, C. W. Enhancement of visual response in monkey striate cortex and frontal eye fields. J. Neurophysiol, 1976b, 39, 766–772.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Michael E. Goldberg
    • 1
  • David Lee Robinson
    • 1
  1. 1.Neurobiology DepartmentArmed Forces Radiobiology Research InstituteBethesdaUSA

Personalised recommendations