The relative significance assigned to olfactory function has, in the past, been largely a matter of disciplinary approach. Thus, in contrast to its fluctuating fortunes in the hands of neuroanatomists assessing components of forebrain function, olfaction has long been accorded a major role by animal behaviorists in sexual and social behavior, trail following, feeding behavior, and identification of territory. Or consider the view that olfaction can directly influence certain physiological functions. Until about the middle of this century this suggestion would have had little support. Then came evidence that, in mice, the odors of a strange male can block the pregnancy of females, while isolation of nonpregnant mice in a large group away from males induces anestrus in a proportion of them (Parkes and Bruce, 1961; Bruce, 1970; Whitten, 1959). Since then, numerous studies have pointed to close functional links between olfaction and endocrine activity. Other reports claimed that olfactory input can influence growth, water balance, and temperature regulation, and that bulbectomy causes marked changes in norepinephrine content of several brain regions (Digiesi et al., 1963; Novákova and Dlouhá, 1960; Edwards and Roberts, 1972; Pohorecky et al., 1969; Eichelman et al., 1972; King and Cairncross, 1974). Similarly, there was until recently limited evidence to support Herrick’s (1933) contention that the olfactory system serves as a nonspecific activator for all cortical functions. It is now known that bulbectomized animals show a tendency toward increased aggression and hyperactivity and are slower to habituate. Indeed, the olfactory system appears to be implicated in many functions attributed to limbic and hypothalamic structures (see Wenzel, 1974).


Olfactory Bulb Olfactory Receptor Olfactory Epithelium Olfactory System Olfactory Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, D. R., and McFarland, L. Z. Septal olfactory organ in Peromyscus. Comp. Biochem. Physiol., 1971, 40A, 971–974.Google Scholar
  2. Adrian, E. D.: Sensory discrimination: With some recent evidence from the olfactory organ. Br. Med. Bull, 1950, 6, 330–333.Google Scholar
  3. Adrian, E. D. The action of the mammalian olfactory organ. J. Laryngol Otol., 1956, 70, 1–14.Google Scholar
  4. Adrian, E. D. Des réactions électriques du système olfactif. Act. Neurophysiol., 1959, 1, 11–18.Google Scholar
  5. Alberts, J. R. Producing and interpreting olfactory deficits. Physiol Behav., 1974, 12, 657–670.Google Scholar
  6. Allen, W. F. Effect of ablating the frontal lobes, hippocampi, and occipito-parieto-temporal (excepting pyriform areas) lobes on positive and negative conditioned reflexes. Am. J. Physiol., 1940, 128, 754–771.Google Scholar
  7. Allen, W. F. Distribution of cortical potentials resulting from insufflation of vapors into the nostrils and from stimulation of the olfactory bulbs and the pyriform lobe. Am. J. Physiol., 1943a, 139, 553–555.Google Scholar
  8. Allen, W. F. Results of prefrontal lobectomy on acquired and acquiring correct conditioned differential responses with auditory general cutaneous and optic stimuli. Am. J. Physiol., 1943b, 139, 525–531.Google Scholar
  9. Allison, A. C., and Warwick, T. R. R. Quantitative observations of the olfactory system of the rabbit. Brain, 1949, 72, 186–197.Google Scholar
  10. Altner, H., and Boeckh, J. Über das Reaktionsspektrum von Wasser fröschen (Rana esculenta). Z. Vergleich. Physiol., 1967, 55, 299–306.Google Scholar
  11. Altner, H., and Kolnberger, I. The application of transmission electron microscopy to the study of the olfactory epithelium of vertebrates. In D. G. Moulton, A. Turk, and J. W. Johnston (eds.). Methods in Olfactory Research. Academic Press, New York, 1975, pp. 163–190.Google Scholar
  12. Anderson, P. Inhibitory reflexes elicited from the trigeminal and olfactory nerves in rabbits. Acta Physiol Scand., 1954, 30, 137–148.Google Scholar
  13. Barber, P. C., and Field, P. M. Autoradiographic demonstration of afferent connections of the accessory olfactory bulb in the mouse. Brain Res., 1975, 85, 201–203.Google Scholar
  14. Barber, P. C., and Raisman, G. An autoradiographic investigation of the projection of the vomeronasal organ to the accessory olfactory bulb in the mouse. Brain Res., 1974, 81, 21–30.Google Scholar
  15. Baylin, F., and Moulton, D. G. Adaptation and cross-adaptation to odor stimulation of olfactory receptors in the tiger salamander. Fed. Proc., 1975, 34, 388 (abstr.).Google Scholar
  16. Benjamin, R. M., and Jackson, J. C. Unit discharges in the mediodorsal nucleus of the squirrel monkey evoked by electrical stimulation of the olfactory bulb. Brain Res., 1974, 75, 181–191.Google Scholar
  17. Bennett, M. H. The role of the anterior limb of the anterior commissure in olfaction. Physiol Behav., 1968, 3, 507–515.Google Scholar
  18. Berry, C. M., Hagamen, W. D., and Hinsey, J. C., Distribution of potentials following stimulation of the olfactory bulb in cat. J. Neurophysiol., 1952, 15, 139–148.Google Scholar
  19. Blank, D. L. : Mechanisms underlying the analysis of odorant quality at the level of the olfactory mucosa. II. Receptor selective sensitivity. Ann. N.Y. Acad. Sci., 1974, 237, 91–101.Google Scholar
  20. Bojsen-Møller, F. Demonstration of terminals, olfactory, trigeminal and perivascular nerves in the rat nasal septum. J. Comp. Neurol., 1975, 159, 245–256.Google Scholar
  21. Broadwell, R. D.: Olfactory relationships of the telencephalon and diencephalon in the rabbit. I. An autoradiographic study of the efferent connections of the main and accessory olfactory bulbs. J. Comp. Neurol., 1975a, 163, 329–346.Google Scholar
  22. Broadwell, R. D.: Olfactory relationships of the telencephalon and diencephalon in the rabbit. II An autoradiographic and horseradish proxidase study of the efferent connections of the anterior olfactory nucleus. J. Comp. Neurol., 1975b, 164, 389–410.Google Scholar
  23. Brodal, A. The hippocampus and the sense of smell. Brain, 1947, 70, 179–222.Google Scholar
  24. Broman, J. Das Organon vomeronasale Jacobsoni: ein Wassergeruchsorgan Anat. Hefte, 1920, 58, 137–192.Google Scholar
  25. Broman, J. Über die Entwickelung der constanten grösseren Nasenhöhlendrüsen der Nagetiere. Z. Anat Entwicksl.-Gesch., 1921, 60, 439–586.Google Scholar
  26. Bruce, H. M. Pheromones. Br. Med. Bull., 1970, 26, 10–13.Google Scholar
  27. Burghardt, G. M.: Chemical perception in reptiles. In J. W. Johnston, Jr., D. G. Moulton, and A. Turk (eds.). Communication by Chemical Signals. Appleton-Century-Crofts, New York, 1970, pp. 241–308.Google Scholar
  28. Cain, W. S. Contribution of the trigeminal nerve to perceived odor magnitude. Ann. N.Y. Acad. Sci, 1974, 237, 28–34.Google Scholar
  29. Callens, M. Peripheral and central regulatory mechanisms of the excitability of the olfactory system. Thesis, Universite de Louvain, 1967, 131 pp.Google Scholar
  30. Carreras, M., Mancia, D., and Mancia, M. Centrifugal control of the olfactory bulb as revealed by induced DC potential changes. Brain Res., 1967, 6, 548–560.Google Scholar
  31. Costanzo, R. M., and Mozell, M. M. Electrophysiological evidence for a topographical projection of the nasal mucosa onto the olfactory bulb of the frog. Soc. Neurosci. Abstr., 1974, 178.Google Scholar
  32. Cowan, W. M., Raksman, G., and Powell, T. P. S. The connexions of the amygdala. J. Neurol Neurosurg. Psychiat., 1965, 28, 137–151.Google Scholar
  33. Cragg, B. G. Responses of the hippocampus to stimulation of the olfactory bulb and of various afferent Inerves in mammals. Exp. Neurol., 1960, 2, 547–572.Google Scholar
  34. Daval, G., and Leveteau, J. Electrophysiological studies of centrifugal and centripetal connections of the anterior olfactory nucleus. Brain Res., 1974, 78, 395–410.Google Scholar
  35. DeMolina, A. F., and Ispizu, A. Neuronal activity evoked in nucleus medialis dorsalis of the thalamusr after stimulation of the amygdala. Physiol Behav., 1972, 8, 135–138.Google Scholar
  36. Dennis, B. J., and Kerr, D. I. B. An evoked potential study of centripetal and centrifugal connections of the olfactory bulb. Brain Res., 1968, 11, 373–396.Google Scholar
  37. Dennis, B. J., and Kerr, D. I. B.: Olfactory bulb connections with basal rhinencephalon in the ferret: An evoked potential and neuroanatomical study. J. Comp. Neurol., 1975, 159, 129–148.Google Scholar
  38. Devor, M., and Murphy, M. R. The effect of peripheral olfactory blockade on the social behavior of the male golden hamster. Behav. Biol., 1973, 9, 31–42.Google Scholar
  39. Digiesi, V., Palchetti, R., and Tortoli, V. Influenza di odori non alimentari sull’ accresciemento corporea del ratto. Rass. Neurol Vegetal (Florence), 1963, 17, 55–66.Google Scholar
  40. Doty, R. L. Intranasal trigeminal detection of chemical vapors by humans. Physiol Behav., 1975, 14, 855–859.Google Scholar
  41. Doty, R. L. (ed.). Mammalian Olfaction, Reproductive Processes and Behavior. Academic Press, New York, 1976.Google Scholar
  42. Doving, K. B., and Pinching, A. J. Selective degeneration of neurones in the olfactory bulb following prolonged odour exposure. Brain Res., 1973, 52, 115–129.Google Scholar
  43. Duchamp, A., Revial, M. F., Holley, A., and MacLeod, P. Odor discrimination by frog olfactory receptors. Chem. Senses Flav., 1974, 1, 213–233.Google Scholar
  44. Ebbesson, S. O. E., and Northcutt, R. G. Neurology of anamniotic vertebrates. In R. B. Masterton (ed.). Evolution of the Nervous System & Behavior. Winston, Washington, D.C., 1975.Google Scholar
  45. Edwards, D. A., and Roberts, R. L. Olfactory bulb removal produces a selective deficit in behavioral regulation. Physiol Behav., 1972, 9, 747–752.Google Scholar
  46. Eichelman, B., Thoa, N. B., Bugbee, N. M., and Ng, K. Y. Brain amine and adrenal enzyme levels in aggressive bulbectomized rats. Physiol Behav., 1972, 9, 483–485.Google Scholar
  47. Estes, R. D. The role of the vomeronasal organ in mammalian reproduction. Mammalia, 1972, 36, 315–341.Google Scholar
  48. Ferrer, N. G. Efferent projections of the anterior olfactory nucleus. J. Comp. Neurol., 1969, 137, 309–320.Google Scholar
  49. Finger, T. E. The distribution of the olfactory tracts in the bullhead catfish (Ictalurus nebulosus). J. Comp. Neurol., 1975, 161, 125–142.Google Scholar
  50. Freeman, W. J. Spatial divergence and temporal dispersion in primary olfactory nerve of cat. J. Neurophysiol., 1972a, 35, 733–744.Google Scholar
  51. Freeman, W. J. Linear analysis of the dynamics of neural masses. Ann. Rev. Biophys. 1972b, 1, 225–256 (Page 226).Google Scholar
  52. Freeman, W. J. Topographic organization of primary olfactory nerve in cat and rabbit as shown by evoked potentials. Electroencephalog. Clin. Neurophysiol., 1974, 36, 33–45.Google Scholar
  53. Gesteland, R. C., Lettvin, J. Y., Pitts, W. H., and Rojas, A. Odor specificities of the frog’s olfactory receptors. In Y. Zotterman (ed.). Olfaction and Taste, Vol. I. Pergamon Press, Oxford, 1963, pp.19–34.Google Scholar
  54. Gesteland, R. C., Lettvin, J. Y., and Pitts, W. H. Chemical transmission in the nose of the frog. J. Physiol. (London), 1965, 181, 525–559.Google Scholar
  55. Getchell, M. L., and Gesteland, R. C. The chemistry of olfactory reception: stimulus-specific projection from sulfhydryl reagent inhibition. Proc. Natl. Acad. Sci. (USA), 1972, 69, 1494–1498.Google Scholar
  56. Getchell, T. V. Unitary responses in frog olfactory epithelium to sterically related molecules at low concentrations. J. Gen. Physiol., 1974a, 64, 241–261.Google Scholar
  57. Getchell, T. V. Electrogenic sources of slow voltage transients recorded from frog olfactory epithelium. J. Neurophysiol., 1974b, 57, 1115–1130.Google Scholar
  58. Getchell, T. V. Intracellular recordings from salamander olfactory epithelium. Neurosci. Abstr., 1975, 1, 2.Google Scholar
  59. Getchell, T. V., and Getchell, M. L.: Signal-detecting mechanisms in the olfactory epithelium: Molecular discrimination. Ann. N.Y. Acad. Sci., 1974, 237, 62–75.Google Scholar
  60. Giachetti, I., and MacLeod, P. Cortical neuron responses to odours in the rat. In D. A. Denton and J. P. Coghlan (eds.). Olfaction and Taste, Vol. V. Academic Press, New York, 1975, pp. 303–307.Google Scholar
  61. Graziadei, P. The olfactory mucosa of vertebrates. In L. M. Beidler (ed.), Handbook of Sensory Physiology, Vol. IV: Olfaction. Springer-Verlag, New York, 1971, pp. 27–58.Google Scholar
  62. Hamlin, H. E. Working mechanism for the liquid and gaseous intake and output of the Jacobson’s, organ. Am. J. Physiol., 1929, 91, 201–205.Google Scholar
  63. Heimer, L.: Synaptic distribution of centripetal and centrifugal nerve fibres in the olfactory system of the rat: An experimental anatomical study. J. Anat., 1968, 103, 413–432.Google Scholar
  64. Heimer, L. The olfactory connections of the diencephalon in the rat. An experimental light- and electromicroscopic study with special emphasis on the problem of terminal degeneration. Brain Behav. Evol., 1972, 6, 484–523.Google Scholar
  65. Henton, W. W., Smith, J. C., and Tucker, D. Odor discrimination in pigeons following section of the olfactory nerves. J. Comp. Physiol Psychol., 1969, 69, 317–323.Google Scholar
  66. Herrick, C. J. The functions of the olfactory parts of the cerebral cortex. Proc. Natl Acad. Sci. (USA), 1933, 19, 7–14.Google Scholar
  67. Hjorth-Simonsen, A. Projection of the lateral part of the entorhinal areas to the hippocampus and fascia dentata. J. Comp. Neurol., 1972, 65, 606–711.Google Scholar
  68. Hornung, D. E., Lansing, R. D., and Mozell, M. M. Distribution of butanol molecules along bullfrog olfactory mucosa. Nature, 1975, 254, 617–618.Google Scholar
  69. Jackson, J. C., and Benjamin, R. M. Unit discharges in the mediodorsal nucleus of the rabbit evoked by electrical stimulation of the olfactory bulb. Brain Res., 1974, 75, 193–201.Google Scholar
  70. Jacobson, L. Description anatomique d’un organe observe dans les mammiferes. Ann. Mus. Hist. Nat. Paris, 1811, 18, 412–424.Google Scholar
  71. Kauer, J. S., and Moulton, D. G. Responses of olfactory bulb neurones to odour stimulation of small nasal areas in the salamander. J. Physiol (London), 1974, 243, 717–737.Google Scholar
  72. Kerr, D. I. B., and Hagbarth, K.-E. An investigation of olfactory centrifugal system. J. Neurophysiol, 1955, 18, 362–374.Google Scholar
  73. Kimble, D. P., and Zack, S. Olfactory discrimination in rats with hippocampal lesions. Psychon. Sci., 1967, 8, 211–212.Google Scholar
  74. King, M. G., and Cairncross, K. D., Effects of olfactory bulb section on brain noradrenaline, corticosterone and conditioning in the rat. Pharmacol Biochem. Behav., 1974, 2, 347–353.Google Scholar
  75. Kölliker, A.: Über das Jacobsonsche Organ des Menschen. Gratulationsschrift d. Med. Facultät in Würzburg, Leipzig, 1877. Cited by Mann (1961).Google Scholar
  76. Kolnberger, I. Vergleichende Untersuchungen am Riechepithel, insbesondere des Jacobsonschen Organs von Amphibien, Reptilien, und Säugetieren. Z. Zellfcrrsch., 1971, 122, 53–67.Google Scholar
  77. Komisamk, B. R., and Beyer, C. Responses of diencephalic neurons to olfactory bulb stimulation, odor and arousal. Brain Res., 1972, 36, 153–170.Google Scholar
  78. Kratzing, J. E. The fine structure of the sensory epithelium of the vomeronasal organ in suckling rats. Aust. J. Biol Sci, 1971, 24, 787–796.Google Scholar
  79. Land, L. J. Localized projection of olfactory nerves to rabbit olfactory bulb. Brain Res., 1973, 63, 153–166.Google Scholar
  80. Land, L. J., and Shepherd, G. M. Autoradiographic analysis of olfactory receptor projections in the rabbit. Brain Res., 1974, 70, 506–510.Google Scholar
  81. Le Gros Clark, W. E. The projection of the olfactory epithelium on the olfactory bulb in the rabbit. J. Neurol. Neurosurg. Psychiat., 1951, 14, 1–10.Google Scholar
  82. Le Gros Clark, W. E. Observations on the structure and organization of the olfactory receptors of the rabbit. Yale J. Biol Med., 1956, 29, 83–95.Google Scholar
  83. Le Gros Clark, W. E. Inquiries into the anatomical basis of olfactory discrimination. Proc. Roy. Soc. London Ser. B, 1957, 146, 299–319.Google Scholar
  84. Leonard, C. M. The connections of the dorsomedial nuclei. Brain Behav. Evol., 1972, 6, 524–541.Google Scholar
  85. Leonard, C. M., and Scott, J. W. Origin and distribution of the amygdalofugal pathways in the rat: An experimental neuroanatomical study. J. Comp. Neurol., 1971, 141, 313–330.Google Scholar
  86. Leveteau, J., MacLeod, P., and Daval, G. Etude électrophysiologique de la discrimination latérale en olfaction. Physiol Behav., 1969, 4, 479–482.Google Scholar
  87. Lohman, A. H. M., and Mentink, G. M. The lateral olfactory tract, the anterior commissure and the cells of the olfactory bulb. Brain Res., 1969, 12, 299–318.Google Scholar
  88. Mann, G. Bulbus olfactorius accessorius in Chiroptera. J. Comp. Neurol., 1961, 116, 135–144.Google Scholar
  89. Mascitti, T. A., Vaccarezza, R. R., Caruso, R. A., and Pavia, M. A.: Centrifugal olfactory fibers in the cat. 1. Site of termination. An experimental study with silver impregnation methods. Acta Physiol. Latino Am., 1971, 21, 216–228.Google Scholar
  90. Mathews, D. F. Response patterns of single neurones in the tortoise olfactory epithelium and bulb. J. Gen. Physiol., 1972, 60, 166–180.Google Scholar
  91. Millhouse, D. E. A Golgi study of the descending medial forebrain bundle. Brain Res., 1969, 75, 341–363.Google Scholar
  92. Mok, A. C. S., and Mogenson, C. J. Effects of electrical stimulation of the lateral hypothalamus, hippocampus, amygdala and olfactory bulb on unit activity of the lateral habenular nucleus in the rat. Brain Res., 1974, 77, 417–429.Google Scholar
  93. Motokizawa, F.: Olfactory input to the thalamus: Electrophysiological evidence. Brain Res., 1974a, 67, 334–337.Google Scholar
  94. Motokizawa, F. Electrophysiological studies of olfactory projection to the mesencephalic reticular formation. Exp. Neurol., 1974b, 44, 135–144.Google Scholar
  95. Moulton, D. G. Electrical activity in the olfactory system of rabbits with indwelling electrodes. In Y. Zotterman (ed.). Olfaction and Taste. Pergamon Press, Oxford, 1963, pp. 71–84.Google Scholar
  96. Moulton, D. G. Interrelation of the chemical senses. In M. R. Kare and O. Mailer (eds.), The Chemical Senses and Nutrition. 1967a, Johns Hopkins, Baltimore, pp. 19–67.Google Scholar
  97. Moulton, D. G. Spatio-temporal patterning of response in the olfactory system. In T. Hayashi (ed.), Olfaction and Taste, Vol. II. Pergamon Press, Oxford, 1967b, pp. 109–116.Google Scholar
  98. Moulton, D. G. In C. Pfaffmann (ed.), Olfaction and Taste, Vol. III. Rockefeller University Press, New York, 1969, p. 231.Google Scholar
  99. Moulton, D. G. Dynamics of cell populations in the olfactory epithelium. Ann. N.Y. Acad. Sci., 1974, 237, 52–61.Google Scholar
  100. Moulton, D. G. Cell renewal in the olfactory epithelium of the mouse. In D. A. Denton and J. P. Coghlan (eds.). Olfaction and Taste, Vol. V. Academic Press, New York, 1975, pp. 111–114.Google Scholar
  101. Moulton, D. G. Spatial patterning of response in the peripheral olfactory system. Physiol Rev., 1976, 56, 478–593.Google Scholar
  102. Moulton, D. G., and Beidler, L. M. Structure and function in the peripheral olfactory system. Physiol Rev., 1967, 47, 1–52.Google Scholar
  103. Moulton, D. G., and Tucker, D. Electrophysiology of the olfactory system. Ann. N.Y. Acad. Sci, 1964, 116, 380–428.Google Scholar
  104. Mozell, M. M. Olfactory discrimination: Electrophysiological spatiotemporal basis. Science, 1964, 143, 1336–1337.Google Scholar
  105. Mozell, M. M. The spatiotemporal analysis of odorants at the level of the olfactory receptor sheet. J. Gen. Physiol., 1966, 50, 25–41.Google Scholar
  106. Mozell, M. M., and Jagodowicz, M. Chromatographic separation of odorants by the nose: Retention times measured across in vivo olfactory mucosa. Science, 1973, 181, 1247–1249.Google Scholar
  107. Mustaparta, H. Spatial distribution of receptor-responses to stimulation with different odours. Acta Physiol Scand., 1971, 82, 154–166.Google Scholar
  108. Novakova, V., and Dlouhá, H. Effect of severing the olfactory bulbs on the intake and excretion of water in the rat. Nature, 1960, 186, 638–639.Google Scholar
  109. O’Connell, R. J., and Mozell, M. M. Quantitative stimulation of frog olfactory receptors. J. Neurophysiol., 1969, 32, 51–63.Google Scholar
  110. Okano, M., Weber, A. F., and Frommes, S. P. Electron microscopic studies of the distal border of the canine olfactory epithelium. J. Ultrastruct. Res., 1967, 17, 487–502.Google Scholar
  111. Ottoson, D. Analysis of the electrical activity of the olfactory epithelium. Acta Physiol Scand., 1956, 35, Suppl. 122, 1–83.Google Scholar
  112. Pager, J. A selective modulation of the olfactory bulb electrical activity in relation to the learning of r palatability in hungry and satiated rats. Physiol Behav., 1974, 12, 189–195.Google Scholar
  113. Parkes, and Bruce, 1961, Olfactory stimuli in mammalian reproduction. Science, 134, 1049–1054.Google Scholar
  114. Pfaff, D. W., and Gregory, E. Olfactory coding in olfactory bulb and medial forebrain bundle of normal and castrated male rats. J. Neurophysiol., 1971, 34, 208–216.Google Scholar
  115. Pfaff, D. W., and Pfaffmann, C. Behavioral and electrophysiological responses of male rats to female rat urine odors. In C. Pfaffmann (ed.). Olfaction and Taste, Vol. III. Rockefeller University Press, New York, 1969, pp. 258–267.Google Scholar
  116. Pinching, A. J., and Døving, K. B. Selective degeneration in the rat olfactory bulb following exposure to different odours. Brain Res., 1974, 82, 195–204.Google Scholar
  117. Pinching, A. J., and Powell, T. P. S. The termination of centrifugal fibres in the glomerular layer of the olfactory bulb. J. Cell Sci., 1972, 10, 621–635.Google Scholar
  118. Pohorecky, L. A., Zigmond, M. J., Heimer, L., and Wurtman, R. J. Olfactory bulb removal: Effects on brain norepinephrine. Proc. Natl Acad. Sci. (USA), 1969, 62, 1052–1055.Google Scholar
  119. Powell, T. P. S., and Cowan, W. M. Centrifugal fibres in the lateral olfactory tract. Nature, 1963, 199, 1296–1297.Google Scholar
  120. Powell, T. P. S., Cowan, W. M., and Raisman, G. The central olfactory connections. J. Anat., 1965, 99, 791–813.Google Scholar
  121. Powers, J. B., and Winans, S. S. Vomeronasal organ: Critical role in mediating sexual behavior of the male hamster. Science, 1975, 187, 961–963.Google Scholar
  122. Pribram, K. H., and Kruger, L. Functions of the “olfactory brain.” Ann. N.Y. Acad. Sci., 1954, 58, 109–138.Google Scholar
  123. Price, J. L. The termination of centrifugal fibers to the olfactory bulb. Brain Res., 1968, 14, 542–545.Google Scholar
  124. Price, J. L. The structure and connexions of the granule cells of the olfactory bulb: An electronmicroscopic study. J. Physiol (London), 1969a, 204, 77–7S.Google Scholar
  125. Price, J. L. The origin of the centrifugal fibers to the olfactory bulbs. Brain Res., 1969b, 14, 542–545.Google Scholar
  126. Price, J. L. An autoradiographic study of the complementary laminar patterns of termination of afferent fibers to the olfactory cortex. J. Comp. Neurol., 1973, 150, 87–108.Google Scholar
  127. Price, J. L., and Powell, T. P. S. An electronmicroscopic study of the termination of the afferent fibers to the olfactory bulb from the cerebral hemisphere. J. Cell Sci., 1970a, 7, 157–187.Google Scholar
  128. Price, J. L., and Powell, T. P. S. An experimental study of the site of origin and the course of the centrifugal fibers to the olfactory bulbs in the rat. J. Anat., 1910b, 107, 215–237.Google Scholar
  129. Price, J. L., and Powell, T. P. S. The afferent connections of the nucleus of the horizontal limb of the diagonal band. J. Anat., 1970c, 107, 239–256.Google Scholar
  130. Price, J. L., and Powell, T. P. S. Certain observations on the olfactory pathway. J. Anat., 1971, 110, 105–126.Google Scholar
  131. Price, J. L., and Sprich, W. W. Observations on the lateral olfactory tract of the rat. J. Comp. Neurol., 1975, 162, 321–336.Google Scholar
  132. Raisman, G. An experimental study of the projection of the amygdala to the accessory olfactory bulb and its relationship to the concept of a dual olfactory system. Exp. Brain. Res., 1972, 14, 395–408.Google Scholar
  133. Raisman, G., and Field, P. M. Sexual dimorphism in the preoptic area of the rat. Science, 1971, 173, 731–733.Google Scholar
  134. Ramon y Cajal, S. R. Y. Histologie du Système Nerveux de l’Homme et des Vertébres, Tome 11.A. Maloire, Paris, 1911.Google Scholar
  135. Rausch, L. J., and Long, C. J. Habenular-nuclei: A crucial link between the olfactory and motor systems. Brain Res., 1971, 29, 146–150.Google Scholar
  136. Rausch, L. J., and Long, C. J. Habenular lesions and discrimination responding to olfactory and visual stimuli. Physiol Behav., 1974, 13, 357–364.Google Scholar
  137. Rausch, R., and Serafetinides, E. A. Specific alterations of olfactory function in humans with temporal lobe lesions. Nature, 1975, 255, 557–558.Google Scholar
  138. Rodolfo-Masera, T. Su l’esistenza di un particolare organo olfattivo nel setto nasale della cavia e di altri rodentori. Arch. Ital Anat. Embriol., 1943, 48, 157–212.Google Scholar
  139. Scalia, F., and Winans, S. S. The differential projections of the olfactory bulb and accessory olfactory bulb in mammals. J. Comp. Neurol., 1975, 161, 31–56.Google Scholar
  140. Schneider, R. A., and Schmidt, C. E. Dependency of olfactory localization on non-olfactory cues. Physiol Behav., 1967, 2, 305–309.Google Scholar
  141. Scott, J. W., and Chafin, B. R. Origin of olfactory projection to lateral hypothalamus and nuclei gemini of the rat. Brain Res., 1975, 88, 64–68.Google Scholar
  142. Scott, J. W., and Leonard, C. M. The olfactory connections of the lateral hypothalamus in the rat mouse117 and hamster. J. Comp. Neurol., 1971, 141, 331–344.Google Scholar
  143. Scott, J. W., and Pfaffmann, C. Olfactory input to the hypothalamus: Electrophysiological evidence. Science, 1967, 158, 1592–1594.Google Scholar
  144. Scott, J. W., and Pfaffmann, C. Characteristics of responses of lateral hypothalamic neurons to olfactory stimulation in the rat. Brain Res., 1972, 48, 251–264.Google Scholar
  145. Sharp, F. R., Kauer, J. S., and Shepherd, G. M. Local sites of activity-related glucose metabolism in the rat olfactory bulb during olfactory stimulation. Brain Res., 1975, 98, 596–600.Google Scholar
  146. Shepherd, G. M. Synaptic organization of the mammalian olfactory bulb. Physiol. Rev., 1972, 52, 864–917.Google Scholar
  147. Shibuya, T., and Shibuya, S. Olfactory epithelium: Unitary responses in the tortoise. Science, 1963, 140, 495–496.Google Scholar
  148. Sieck, M. H., and Daumbach, H. D. Differential effects of peripheral and central anosmia producing techniques on spontaneous behavior patterns. Physiol. Behav., 1974, 13, 407–425.Google Scholar
  149. Takagi, S. F. Degeneration and regeneration of the olfactory epithelium. In L. M. Beidler (ed.). Olfaction: Handbook of Sensory Physiology. Springer-Verlag, New York, 1971, pp. 75–94.Google Scholar
  150. Takagi, S. F., and Omura, K. Responses of the olfactory receptor cells to odours. Proc. Japan Acad., 1963, 36, 253–255.Google Scholar
  151. Tanabe, T., Yarita, H., Iino, Y., Ooshima, Y., and Takagi, S. F. An olfactory projection area in orbitofrontal cortex of the monkey. J. Neurophysiol., 1975a, 38, 1269–1283.Google Scholar
  152. Tanabe, T., Iino, M., and Takagi, S. F. Discrimination of odors in olfactory bulb, pyriform-amygdaloid areas and orbitofrontal cortex of the monkey. J. Neurophysiol, 1975b, 38, 1284–1296.Google Scholar
  153. Tucker, D. Physical variables in the olfactory stimulation process. J. Gen. Physiol., 1963a, 46, 453–489.Google Scholar
  154. Tucker, D. Olfactory, vomeronasal and trigeminal receptor responses to odorants. In Y. Zotterman (ed.), Olfaction and Taste, Vol. 1. New York, Pergamon Press, 1963b, pp. 45–69.Google Scholar
  155. Tucker, D. Nonolfactory responses from the nasal cavity: Jacobson’s organ and the trigeminal system. In L. M. Beidler (ed.), Handbook of Sensory Physiology, Vol. IV. Springer-Verlag, New York, 1971, pp. 151–177.Google Scholar
  156. Tucker, D., and Beidler, L. M. Efferent impulses to the nasal area. Fed. Proc., 1956, 15, 613.Google Scholar
  157. Tucker, D., Graziadei, P. P. C., and Smith, J. C. Recovery of olfactory function in pigeons after bilateral transection of the olfactory nerves. In D. A. Denton and J. P. Coghlan (eds.). Olfaction and Taste, Vol. V. Academic Press, New York, 1975, pp. 369–373.Google Scholar
  158. von Békésy, G. Olfactory analogue to directional hearing. J. Appl. Physiol., 1964, 19, 369–373.Google Scholar
  159. von Brunn, A. Beiträge zur mikroskopischen Anatomie der menschlichen Nasenhöhle. Arch. Mikrosk. Anat., 1892, 39, 632–651.Google Scholar
  160. von Skramlik, E. Über die Lokalisation der Empfindungen bei den niederen Sinnen. Z. Sinnesphysiol., 1925, 56, 69–100.Google Scholar
  161. Way, J. S. An oscillographic study of afferent connections to the hippocampus in the cat (Felis domesticus). Electroencephalog. Clin. Neurophysiol, 1962, 14, 78–89.Google Scholar
  162. Wedgwood, M. Connexions between the olfactory bulb and the habenula and dorsomedial thalamic nuclei. J. Physiol (London), 1974, 239, 88–89.Google Scholar
  163. Wenzel, B. M. The olfactory system and behavior. In L. V. DiCara (ed.). Limbic and Autonomic Nervous Systems Research. Plenum, New York, 1974, pp. 1–40.Google Scholar
  164. Whitten, W. K. Occurrence of anoestrous in mice caged in groups. J. Endocrinol., 1959, 18, 102–107.Google Scholar
  165. Willey, J. Ultrastructure of the cat olfactory bulb. J. Comp. Neurol., 1973, 152, 211–232.Google Scholar
  166. Winans, S., and Scalia, F. Amygdaloid nucleus: New afferent input from the vomeronasal organ. Science, 1970, 170, 330–332.Google Scholar
  167. Woods, W. H., Holland, R. C., and Powell, E. W. Connections of cerebral structures functioning in neurohypophysial hormone release. Brain Res., 1969, 12, 26–46.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • D. G. Moulton
    • 1
  1. 1.Monell Chemical Senses Center and Department of PhysiologyUniversity of Pennsylvania, and Veterans Administration HospitalPhiladelphiaUSA

Personalised recommendations