Phylogeny of the Vertebrate Sensory Systems

  • R. Bruce Masterton
  • K. K. Glendenning


Most of the sensory systems of vertebrates have an evolutionary history that stretches back to before the origin of the vertebrates themselves. If this long history were available for close inspection, a number of fundamental questions about the physiology of the senses and their primary behavioral contributions could be quickly answered and these answers could be expected to bring with them a kind of insight into sensory system function not possible to gain by experiment alone. Even as incompletely known as it now is, the evolutionary history of the sensory systems remains a source of new and relatively independent ideas about structure-function relationships that serve to augment the range of plausible hypotheses fueling direct physiological and behavioral experimentation (Tucker and Smith, 1976; Wever, 1976; Stebbins, 1970; Glickstein, 1976; Berkley, 1976). It is for this reason that the conclusions of the comparative and paleontological sciences are of particular value to those interested in the neural mechanisms of sensory integration.


Inferior Colliculus Olfactory System Cochlear Nucleus Tree Shrew Somatosensory System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian, E. D. Double representation of the feet in the sensory cortex of the cat. J. Physiol. (London), 1940, 98, 16.Google Scholar
  2. Allison, A. C. The morphology of the olfactory system in the vertebrates. Bioi. Rev., 1953, 28, 195–244.Google Scholar
  3. Allison, A. C., and Warwick, R. T. T. Quantitative observations on the olfactory system of the rabbit. Brain, 1949, 72, 186–197.Google Scholar
  4. Allman, J. Evolution of the visual system in the early primates. In J. M. Sprague and A. N. Epstein (eds.), Progress in Psychobiology and Physiological Psychology. Academic Press, New York, 1977, pp. 153.Google Scholar
  5. Allman, J. M., and Kaas, J. H. Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). Brain Res., 1971, 35, 89–106.Google Scholar
  6. Allman, J. M., and Kaas, J. H. The organization of the second visual area (VII) in the owl monkey: A second order transformation of the visual hemifield. Brain Res., 1974, 76, 247–265.Google Scholar
  7. Allman, J. M., Kaas, J. H., and Lane, R. H. The middle temporal visual area (MT) in the bush baby, Galago senegalensis. Brain Res., 1973, 57, 197–202.Google Scholar
  8. Andres, K. H. Anatomy and ultra-structure of the olfactory bulb in fish, amphibians, reptiles, birds, and mammals. In G. E. W. Wolstenholme and J. Knight (eds.), Taste and Smellin Vertebrates. Churchill, London, 1970.Google Scholar
  9. Ariens Kappers, C. D., Huber, G. C., and Crosby, E. C. The Comparative Anatomy of the Nervous System of Vertebrates, Including Man. Hafner, New York, 1936.Google Scholar
  10. Atema, J. Structure and functions of the sense of taste in the catfish (Ictalurusnatalis). Brain Behav. Evol., 1971, 4, 273–294.Google Scholar
  11. Baird, L L., Some aspects of the comparative anatomy and evolution of the inner ear in submammalian vertebrates. Brain Behav. Evol., 1974, 10, 11–36.Google Scholar
  12. Barlow, H. B., Hill, R. M., and Levick, W. R. Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. J. Physiol. (London), 1964, 173, 377–407.Google Scholar
  13. Barrington E. J. W., and Jefferies, R. P. S. (eds.). Protochordates: Symposium ofthe Zoological Society of London. Academic Press, London, 1975.Google Scholar
  14. Benjamin, R. M. Some thalamic and cortical mechanisms of taste. In Y. Zotterman (ed.), Olfaction and Taste. Macmillan, New York, 1963, pp. 309–329.Google Scholar
  15. Berkley, M. A. Some comments on visual acuity and its relation to eye structure. In R. B. Masterton, M. E. Bitterman, C. B. G. Campbell, and N. Hotten (eds.), Evolution of Brain and Behavior in Vertebrates. Lawrence Erlbaum Assoc., Hillsdale, N. J., 1976, pp. 73–88.Google Scholar
  16. Bertmar, G. The vertebrate nose, remarks on its structural and functional adaptation and evolution. Evolution, 1969, 23, 131–152.Google Scholar
  17. Bishop, G. H., Clare, M. H., and Landau, W. M. The relation of axon sheath thickness to fiber size in the central nervous system of vertebrates. Int. J. Neuro sci., 1971, 2, 69–78.Google Scholar
  18. Bombardieri, R. A., Jr., Johnson, J. L, Jr., and Campos, G. B., Species differences in mechanosensory projections from the mouth to the ventrobasal thalamus. J. Compo Neurol., 1975, 163, 41–64.Google Scholar
  19. Boord, R. L. The anatomy of the avian auditory system. Ann. N.Y. Acad. Sci., 1969, 167, 186–198.Google Scholar
  20. Boord, R. L., and Karten, H. J. The distribution of primary lagenar fibers within the vestibular nuclear complex of the pigeon. Brain Behav. Evol., 1974, 10, 228–235.Google Scholar
  21. Boudreau, J. C. Neural encoding in cat geniculate ganglion tongue units. Chem. Senses Flavor, 1974, 1, 41–51.Google Scholar
  22. Brawer, J. R., Morest, D. K., and Kane, E. C. The neuronal architecture of the cochlear nucleus of the cat. J. Compo Neurol. 1974, 155, 251–300.Google Scholar
  23. Broadwell, R. D., Olfactory relationships of the telencephalon and diencephalon in the rabbit. I. An autoradiographic study of the efferent connections of the main and accessory olfactory bulbs. J. Compo Neurol., 1975, 163, 329–346.Google Scholar
  24. Cain, W. S. Differential sensitivity for smell: “Noise” at the nose. Science, 1977, 195, 796–798.Google Scholar
  25. Cajal, S. R. Y. Histologie du Systente Nerveux de THomme et des Vertebres. Maloine, Paris, 1911.Google Scholar
  26. Capranica, R. R. Morphology and physiology of the auditory system. In R. Llinas and W. Precht (eds.), FrogNeurobiology. Springer-Verlag, New York, 1976, pp. 551–575.Google Scholar
  27. Casagrande, V. A., Harting, J. K., Hall, W. C., Diamond, LT., and Martin, G. F., Superior colliculus of the tree shrew: A structural and functional subdivision into superficial and deep structures. Science, 1972, 177, 444–447.Google Scholar
  28. Caspary, D. Classification of subpopulations of neurons in the cochlear nuclei of the kangaroo rat. Exp. Neurol., 1972, 37, 131–151.Google Scholar
  29. Cowan, W. M., Gottlieb, D. L, Hendrickson, A. E., Price, J. L. and Woolsey, T. A. The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res., 1972, 37, 21–51.Google Scholar
  30. Crescitellia, F., and Pollack, J. D., Color vision in the antelope ground squirrel. Science, 1965, 150, 1316–1318.Google Scholar
  31. Darian-Smith, L., The trigeminal system. In Handbook of Sensory Physiology, Vol. II: Somatosensory System. Springer-Verlag, New York, 1973, pp. 271–314.Google Scholar
  32. DeFina, A. V., and Webster, D. B., Projections of the intraotic ganglion to the medullary nuclei in the tegu lizard, Tupinambis nigropunctatus. Brain Behav. Evol., 1974, 10, 197–211.Google Scholar
  33. Diamond, I. T., Jones, E. G., and Powell, T. P. S. The projection of the auditory cortex upon the diencephalon and brainstem in the cat. Brain Res., 1969, 15, 305–340.Google Scholar
  34. Diamond, I. T., Snyder, M., Killackey, H., Jane, J., and Hall, W. C. Thalamocortical projections in the tree shrew (Tupaia glis). J. Compo Neurol., 1970, 139, 273–306.Google Scholar
  35. Doty, R. L. Mammalian Olfaction, ReproductiveProcesses and Behavior. Academic Press, New York, 1976.Google Scholar
  36. Dowling, J. Organization of vertebrate retinas. Invest. Ophthalmol., 1970, 9, 655–680.Google Scholar
  37. Dubin, M. The inner plexiform layer of the vertebrate retina: A quantitative and comparative study. J. Compo Neurol., 1970, 140, 479–505.Google Scholar
  38. Duke-Elder, S. The anatomy of the visual system. In S. Duke-Elder (ed.), System ofOphthalmology, Vol. 2. Kimpton, London, 1961.Google Scholar
  39. Dunn, J., and Matze, H. A. Efferent fiber connections of the marmoset (Oedipomidas oedipus) trigeminal nucleus caudalis. J. Compo Neurol., 1968, 133, 429–438.Google Scholar
  40. Easton, D. M. Garfish olfactory nerve: Easily accessible source of numerous long homogeneous nonmyelinated axons. Science, 1971, 172, 952–955.Google Scholar
  41. Ebbesson, S. O. E. Ascending axon degeneration following hemisection of the spinal cord in the tegu lizard (Tupinamhis nigropunctatus). Brain Res., 1967, 5, 178–206.Google Scholar
  42. Ebbesson, S. O. E. Brain stem afferents from the spinal cord in a sample of reptilian and amphibian species. Ann. N.Y. Acad. Sci., 1969, 167, 80–101.Google Scholar
  43. Ebbesson, S. O. E. New insights into the organization of the shark brain. Compo Biochem. Physiol., 1972, 42, 121–129.Google Scholar
  44. Ebbesson, S. O. E. Morphology of the spinal cord. In R. Llinas and W. Precht (eds.), Frog Neurobiology. Springer-Verlag, New York, 1976, pp. 688–706.Google Scholar
  45. Ebbesson, S. O. E., and Northcutt, R. G. Neurology of anamniotic vertebrates. In R. B. Masterton et al. (eds.), Evolution of Brain and Behavior of Vertebrates. Lawrence Erlbaum Assoc., Hillsdale, New Jersey, 1976, pp. 115–146.Google Scholar
  46. Ebbesson, S. O. E., and Schroeder, D. M. Connections ofthe nurse shark’s telencephalon. Science, 1971, 173, 254–256.Google Scholar
  47. Edwards, S. B., Rosenquist, A. C., and Palmer, L. A. An autoradiographic study of ventral lateral geniculate projections in the cat. Brain Res., 1974, 72, 282–287.Google Scholar
  48. Eleftheriou, B. E. (ed.). The Neurobiology ofthe Amygdala. Plenum, New York, 1972.Google Scholar
  49. Elliot Smith. G. Some problems relating to the evolution of the brain. Lancet, 1910, 1.Google Scholar
  50. Feng, A. S., and Capranica, R. R., Sound localization in anurans. I. Evidence of binaural interaction in dorsal medullary nucleus of bull frogs (Rana catesbeiana). J. Neurophysiol., 1976, 39, 871–881.Google Scholar
  51. Finger, T. E., Gustatory pathways in the bullhead catfish. I. Connection of the anterior ganglion. J. Compo Neurol., 1976, 165, 513–526.Google Scholar
  52. Fink, R. P., and Heimer, L. Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res., 1967, 4, 369–374.Google Scholar
  53. Foster, R. E. The ascending brainstem auditory pathway in a reptile, Iguana iguana. Anat. Rec., 1974, 178, 357.Google Scholar
  54. Foster, R. E. The organization of central acoustic pathways in a reptile, Iguana iguana. Ph.D. dissertation, Duke University, 1976.Google Scholar
  55. Fox, R., Lehmkuhle, S. W., and Westendorf, D. H. Falcon visual acuity. Science, 1976a, 192, 263–265.Google Scholar
  56. Fox, R., Lehmkuhle, S. W., and Bush, R. C. Stereoscopic vision in the falcon (Falco sparverius). Paper presented at Society for Neuroscience, Toronto, 1976b.Google Scholar
  57. Fuller, P. M. Projections of the vestibular nuclear complex in the bullfrog (Rana catesbeiana). Braui Behao. Evol., 1974, 10, 157–169.Google Scholar
  58. Fuller, P. M., and Ebbesson, S. O. E. Central connections of the vestibular nuclear complex in the bullfrog (Rana catesbeiana). Anat. Rec., 1973a, 175, 325.Google Scholar
  59. Fuller, P. M., and Ebbesson, S. O. E. Central projections of the trigeminal nerve in the bullfrog (Rana catesbeiana). J. Compo Neurol., 1973b, 152, 193–200.Google Scholar
  60. Glendenning, K. K., Hall, J. A., Diamond, I. T., and Hall, W. C. The pulvinar nucleus of Galago senegalensis. J. Compo Neurol., 1975, 161, 419–458.Google Scholar
  61. Glickstein, M. The vertebrate eye. In R. B. Masterton, M. E. Bitterman, C. B. G. Campbell, and N. Hotten (eds.), Evolution of Brain and Behavior in Vertebrates. Lawrence Erlbaum Assoc., Hillsdale, N.J., 1976, pp. 53–72.Google Scholar
  62. Graeber, R. C., Schroeder, D. M., Jane, J. A., and Ebbesson, S. O. E. The importance of telencephalic structures in visual discrimination learning in nurse sharks. Society for Neuroscience, Second Annual Meeting, 1972.Google Scholar
  63. Graybiel, A. M. Visuo-cerebellar and cerebella-visual connections involving the ventral lateral geniculte nucleus. Exp. Brain Res., 1974, 20, 303–306.Google Scholar
  64. Graziadei, P. P. C. The olfactory organ of vertebrates: A survey. In R. Bellairs and E. G. Gray (eds.), Essays on the Nervous System; a Festschriftfor Professor J. Z. Young. Clarendon Press, Oxford, 1974, pp. 191–222.Google Scholar
  65. Gregory, K. M. Central projections of the eighth nerve in frogs. Brain Behav. Evol., 1972, 5, 70–88.Google Scholar
  66. Grether, W. F. Color vision and color blindness in monkeys. Compo Psychol. Monogr., 1939, 15, 1–38.Google Scholar
  67. Groenewegem, H. J., Boesten, A. J. P., and Voogd, J. The dorsal column nuclear projections to the nucleus ventralis posterior lateralis thalami and the inferior olive in the cat: An autoradiographic study. J. Compo Neurol., 1975, 162, 505–518.Google Scholar
  68. Gross, G. W., and Beidler, L. M. Fast axoplasmic transport in the c-fibers of the garfish olfactory nerve. J. Neurobiol., 1973, 4, 413–428.Google Scholar
  69. Gulley, R. L., Cochran, M., and Ebbesson, S. O. E. The visual connections of the adult flatfish, Achirus lineatus. J. Compo Neurol., 1975, 162, 309–320.Google Scholar
  70. Gwyn, D. G., and Waldron, H. A. A nucleus in the dorsolateral funiculus of the spinal cord of the rat. Brain Res., 1968, 10, 342–351.Google Scholar
  71. Gwyn, D. G., and Waldron, H. A. Observations on the morphology of a nucleus in the dorsolateral funiculus of the spinal cord of the guinea-pig, rabbit, ferret and cat. J. Comp. Neurol., 1969, 136, 233–236.Google Scholar
  72. Ha, H. Cervicothalamic tract in the rhesus monkey. Exp. Neurol., 1971, 33, 205–212.Google Scholar
  73. Hagg, S. and Ha, H. Cervicothalamic tract in the dog. J. Comp. Neurol., 1970, 139, 357–374.Google Scholar
  74. Hall, W. C., and Ebner, F. F. Thalamo-telencephalic projections in a turtle (Pseudemys scripta). Anat. Rec., 1969, 193, 163.Google Scholar
  75. Harrison, J. M., and Feldman, M. L. Anatomical aspects of the cochlear nucleus and superior olivary complex. In W. D. Neff (ed.), Contributions to Sensory Physiology, Vol. IV. Academic Press, New York, 1970, pp. 95–142.Google Scholar
  76. Harrison, J. M., and Warr, W. B. A study of the cochlear nuclei and ascending auditory pathways of the medulla. J. Comp. Neurol., 1962, 119, 341–380.Google Scholar
  77. Harting, J. K., Glendenning, K. K., Diamond, I. T., and Hall, W. C., Evolution of the primate visual system: Anterograde degeneration studies of the tecto-pulvinar system. Am. J. Phys. Anthropol., 1973, 38, 383–392.Google Scholar
  78. Hayhow, W. R. The cytoarchitecture of the lateral geniculate body in the cat in relation to the distribution of crossed and uncrossed optic fibers. J. Comp. Neurol., 1958, 1, 110.Google Scholar
  79. Hayle, T. H. A comparative study of spinocerebellar systems in three classes of poikilothermic vertebrates. J. Comp. Neurol., 1973, 149, 477–495.Google Scholar
  80. Heffner, R., and Masterton, B. Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain Behav. Evol., 1975, 12, 161–200.Google Scholar
  81. Heimer, L. Synaptic distribution of centripetal and centrifugal nerve fibers in the olfactory system of the rat. J. Anat., 1968, 103, 413–432.Google Scholar
  82. Heimer, L. The secondary olfactory connections in mammals, reptiles and sharks. Ann. N.Y. Acad. Sci., 1969, 167, 129–147.Google Scholar
  83. Heimer, L. The olfactory connections of the diencephalon in the rat. Brain Behavo. Evol., 1972, 6, 484523.Google Scholar
  84. Herrick, C. J. The fasciculus solitarius and its connections in amphibians and fishes. J. Comp. Neurol., 1944, 81, 307–331.Google Scholar
  85. Herrick, C. J. The Brain of the Tiger Salamander, Ambystoma tigrinum. The University of Chicago Press, Chicago, 1948.Google Scholar
  86. Hodos, W., and Karten, H. J. Visual intensity and pattern discrimination deficits after lesions of ectostriatum in pigeons. J. Comp. Neurol., 1970, 140, 53–68.Google Scholar
  87. Hodos, W., Karten, H. J., and Bonbright, J. C., Jr. Visual intensity and pattern discrimination after lesions of the thalamofugal visual pathway in pigeons. J. Comp. Neurol., 1973, 148, 447–468.Google Scholar
  88. Hopkins, D. A., and Holstege, G., Central amygdaloid nucleus projections to the lower brainstem in the cat: A horseradish peroxidase and autoradiographic study. Anat. Rec., 1976, 184, 432.Google Scholar
  89. Ingle, D. Behavioral correlates of central visual function in anurans. In R. Llinas and W. Precht (eds.), Frog Neurobiology. Springer-Verlag, New York, 1976, pp. 435–451.Google Scholar
  90. Joseph, B. S., and Whitlock, D. G. Central projections of selected spinal dorsal roots in anuran amphibians. Anal. Rec., 1968a, 160, 279–288.Google Scholar
  91. Joseph, B. S., and Whitlock, D. G. The morphology of spinal afferent-efferent relationships in vertebrates. Brain Behav. Evol., 1968b, 1, 2–18.Google Scholar
  92. Kaas, J., Hall, W. C., Killackey, H., and Diamond, I. T. Visual cortex of the tree shrew (Tupaia glis). Architectonic subdivisions and representations of the visual field. Brain Res., 1972, 42, 491–496.Google Scholar
  93. Kare, M. Comparative study of taste. Handbook ofSensory Physiology, Vol. IV, No.2. 1971, pp. 270–290.Google Scholar
  94. Karten, H. J. The organization of the ascending auditory pathway in the pigeon (Columba livia). I. Diencephalic projections of the inferior colliculus (nucleus mesencephali lateralis, pars dorsalis). Brain Res., 1967, 6, 409–427.Google Scholar
  95. Karten, H. J. The ascending auditory pathway in the pigeon (Columba livia). II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Res., 1968, 11, 134–153.Google Scholar
  96. Karten, H. J., and Nauta, W. J. H. Organization of retinothalamic projections in the pigeon and owl. Anat. Rec., 1968, 160, 373.Google Scholar
  97. Karten, H.J., Hodos, W., Nauta, W.J. H., and Revzin, A. M., Neural connections of the “visual wulst” of the avian telencephalon: Experimental studies in the pigeon (Columba livia) and owl (Speotyto cunicularia). J. Comp. Neurol., 1973, 150, 253–278.Google Scholar
  98. Krettek, J. E., and Price, J. L. A direct input from the amygdala to the thalamus and the cerebral cortex. Brain Res., 1974, 67, 169–174.Google Scholar
  99. Kruger, L., and Berkowitz, E. C. The main afferent connections of the reptilian telencephalon as determined by degeneration and electrophysiological methods. J. Comp. N eurol., 1960, 115, 12514l.Google Scholar
  100. Larsell, O. The Comparative Anatomy and Histology ofthe Cerebellumfrom Myxinoids through Birds. University Minnesota Press, Minneapolis, 1967.Google Scholar
  101. La Vail, J. H., Winston, K. R., and Tish, A. A method based on retrograde axonal transport of protein for identification of cell bodies of origin ofaxons terminating within the C.N.S. Brain Res., 1973, 58, 470–477.Google Scholar
  102. Lawrence, D. G., and Kuypers, H. G. J. M., Functional organization of the motor system in the monkey. II. The effect of lesions of the descending brainstem pathways. Brain, 1968, 91, 15–36.Google Scholar
  103. Leake, P. A. Central projections of the statoacoustic nerve in Caiman crocodilus. Brain Behav. Evol., 1974, 10, 170–196.Google Scholar
  104. Le Gros Clark, W. E. The Antecedents of Man. Edinburgh University Press, Edinburgh, 1959.Google Scholar
  105. Lettvin, J. Y., Maturana, H. R., McCullock, W. S., and Pitts, W. H. What the frog’s eye tells the frog’s brain. Proc. Inst. Radio Engineers, 1959, 47, 1940–195l.Google Scholar
  106. Liu, C. N., and Chambers, W. W. Experimental study of anatomical organization of frog’s spinal cord. Anat. Rec., 1957, 127, 326.Google Scholar
  107. Manley, G. A. A review of some current concepts of the functional evolution of the ear in terrestrial vertebrates. Evolution, 1972, 26, 608–621.Google Scholar
  108. Marler, P. Specific distinctiveness in the communication signals of birds. Behaviour, 1957, 11, 13–39.Google Scholar
  109. Marquis, D. G. Phylogenetic interpretation of the functions of the visual cortex. Arch. Neurol. Psychiat., 1935, 33, 807–815.Google Scholar
  110. Masterton, R. B., and Diamond, I. T., Hearing: Central neural mechanisms. Handbook of Perception, Vol. III, 1973, pp. 409–448.Google Scholar
  111. Masterton, R. B., Heffner, H., and Ravizza, R. The evolution of human hearing. J. Acoust. Soc. Am., 1969, 45, 966–985.Google Scholar
  112. Masterton, R. B., Skeen, L. C., and RoBards, M. J., Origins of anthropoid intelligence. Brain Behav. Evol., 1974, 10, 322–353.Google Scholar
  113. Masterton, R. B., Thompson, G. C., Bechtold, J. K., and RoBards, M. J., Neuroanatomical basis of binaural phase-difference analysis for sound localization: A comparative study. J. Comp. Physiol. PsychoI., 1975, 89, 379–386.Google Scholar
  114. Masterton, R. B., Bitterman, M. E., Campbell, C. B. G. and Hotten, N. (eds.). Evolution of Brain and Behavior in Vertebrates. Wiley, New York, 1976a.Google Scholar
  115. Masterton, R. B., Hodos, W., and Jerison, H. (eds.). Evolution, Brain and Behavior, Persistent Problems. Wiley, New York, 1976b.Google Scholar
  116. Mehler, W. R. Some observations on secondary ascending afferent systems in the central nervous system. In R. S. Knighton and P. R. Dumke (eds.), Pain. Little, Brown, Boston, 1966, pp. 11–32.Google Scholar
  117. Mehler, W. R. Comparative anatomy of the vestibular nuclear complex in submammalian vertebrates. Brain Res., 1972, 37, 55–67.Google Scholar
  118. Mehler, W. R., Feferman, M. E., and Nauta, W. J. H., Ascending axon degeneration following anterolateral cordotomy: An experimental study in the monkey. Brain, 1960, 83, 718–750.Google Scholar
  119. Miles, F. A. Centrifugal control of the avian retina. I. Receptive field properties of retinal ganglion cells. Brain Res., 1972, 48, 65–92.Google Scholar
  120. Mishkin, M. Visual mechanisms beyond the striate cortex. In R. Russell (ed.), Frontiers in Physiological Psychology, Academic Press, New York, 1966.Google Scholar
  121. Morest, D. K. The laminar structure of the medial geniculate body of the cat. J. Anat. (London), 1965, 99, 143–160.Google Scholar
  122. Morest, D. K. The non-cortical neuronal architecture of the inferior colliculus of the cat. Anat. Rec., 1966, 154, 477.Google Scholar
  123. Nachman, M., and Ashe, J. H. Effects of basolateral amygdala lesions on neophobia, learned taste aversions, and sodium appetite in rats. J. Compo Physiol. Psychol., 1974, 87, 622–643.Google Scholar
  124. Nauta, W. J. H., and Gygax, P. A., Silver impregnation of degenerating axons in the central nervous system: A modified technique. Stain Tech., 1954, 29, 91–93.Google Scholar
  125. Nauta, W. J. H., and Karten, H. J. A general profile of the vertebrate brain, with sidelights on the ancestry of cerebral cortex. In F. O. Schmitt (ed.), The Neurosciences: Second Study Program. Rockefeller University Press, New York, 1970, pp. 7–26.Google Scholar
  126. Negus, U., Comparative Anatomy of the Nose and Paranasal Sinuses. E & S Livingstone, London, 1958.Google Scholar
  127. Nieuwenhuys, R. Topological analysis of the brainstem of the lamprey Lampetra fluviatilis. J. Comp. Neurol., 1972, 145, 165–178.Google Scholar
  128. Noback, C. R. The heritage of the human brain. American Museum of Natural History, James Arthur Lecture, 1959.Google Scholar
  129. Norgren, R., Taste pathways to hypothalamus and amygdala. J. Compo Neurol., 1976, 166, 17–30.Google Scholar
  130. Norgren, R., and Leonard, C. M., Ascending central gustatory pathways. J. Comp. Neurol., 1973, 150, 217–238.Google Scholar
  131. Northcutt, R. G. Pallial projections of sciatic, ulnar and trigeminal afferents in a frog (R. catesbeiana). Anat. Rec., 1970, 166, 356.Google Scholar
  132. Norton, A. C., and Kruger, L. The dorsal column system of the spinal cord. Its anatomy, physiology, phylogeny and sensory function. An updated review. Brain Inform. Ser., 1973.Google Scholar
  133. Papez, J. W., Central acoustic tract in cat and man. Anat. Rec., 1929, 42, 60.Google Scholar
  134. Parks, T. N., and Rubel, E. W., Organization and development of brainstem auditory nuclei of the chicken: Organization of projections from n. magnocellularis to n. laminaris. J. Comp. Neurol., 1975, 164, 435–448.Google Scholar
  135. Parsons, T. S. Evolution of the nasal structure in the lower tetrapods. Am. Zool., 1967, 7, 397–413.Google Scholar
  136. Parsons, T. S. The origin ofJacobson’s organ. Forma Functio, 1970, 3, 105–111.Google Scholar
  137. Polyak, S. M. The Vertebrate Visual System. University of Chicago Press, Chicago, 1957.Google Scholar
  138. Potter, D. H., Mesencephalic auditory region of the bullfrog. J. Neurol., 1965, 28, 1132–1154.Google Scholar
  139. Price, J. L., and Powell, T. P. S. Certain observations on the olfactory pathway. J. Anat., 1971, 110, 105–126.Google Scholar
  140. Pumphrey, R. J., Hearing. Symp. Soc. Exp. Biol., 1950, 4, 19–34.Google Scholar
  141. Raczkowski, D., Diamond, I. T., and Winer, J. Organization of thalamo-cortical auditory system in the cat studied with horseradish peroxidase. Brain Res., 1976, 101, 345–354.Google Scholar
  142. Raisman, G. An experimental study of the projection of the amygdala to the accessory olfactory bulb and its relationship to the concept of a dual olfactory system. Exp. Brain. Res., 1972, 14, 395–408.Google Scholar
  143. Rexed, B., and Brodal, A. The nucleus cervicalis lateralis: A spinocerebellar relay nucleus. J. Neurophysiol., 1951, 14, 399–407.Google Scholar
  144. RoBards, M. J., Watkins, D. W. III, and Masterton, R. B., An anatomical study of some somesthetic afferents to the intercollicular terminal zone of the midbrain of the opossum. J. Compo Neurol., 1976, 170, 499–524.Google Scholar
  145. Rockel, A. J., and Jones, E. G. The neuronal organization of the inferior colliculus of the adult cat. I. The central nucleus. J. Compo Neurol., 1973a, 147, 11–60.Google Scholar
  146. Rockel, A. J., and Jones, E. G. The neuronal organization of the inferior colliculus of the adult cat. II. The pericentral nucleus. J. Compo Neurol., 1973b, 149, 301–334.Google Scholar
  147. Rodieck, R. W. The Vertebrate Retina. Freeman, San Francisco, 1973.Google Scholar
  148. Rubinson, K. The central distribution of VIII nerve afferents in larval petromyzon marinus. Brain Behav. Evol., 1974, 10, 121–129.Google Scholar
  149. Rushton, W. A. H., A theory on the effects of fiber size in medullated nerve. J. Physiol. (London), 1951, 115, 101–122.Google Scholar
  150. Samat, H. B., and Netsky, M. G., Evolution of the Neroous System. Oxford University Press, New York, 1974.Google Scholar
  151. Scalia, F., and Winans, S. S. The differential projections of the olfactory bulb and accessory olfactory bulb in mammals. J. Compo Neurol., 1975, 161, 31–56.Google Scholar
  152. Scalia F., and Winans, S. S., New perspectives on the morphology of the olfactory system: Olfactory and vomeronasal pathways in mammals. In R. L. Doty (ed.), Mammalian Olfaction, Reproductive Processes, and Behavior. Academic Press, New York, 1976.Google Scholar
  153. Schlaer, R., An eagle’s eye: Quality of the retinal image. Science, 1972, 176, 920–922.Google Scholar
  154. Schneider, G. E. Two visual systems; brain mechanisms for localization and discrimination are dissociated by tectal and cortical lesions. Science, 1969, 163, 895–902.Google Scholar
  155. Schroeder, D. M., and Jane, J. A. The intercollicular area of the inferior colliculus. Brain Behav. Evol., 1976, 13, 125–141.Google Scholar
  156. Scott, J. W., and Leonard, C. M. The olfactory connections of the lateral hypothalamus in the rat, mouse, and hamster. J. Comp. Neurol., 1971, 141, 331–344.Google Scholar
  157. Shepherd, G. M. Synaptic organization of the mammalian olfactory bulb. Physol. Rev., 1972, 52, 864–917.Google Scholar
  158. Shorey, H. H. Animal Communication byPheromones. Academic Press, New York, 1976.Google Scholar
  159. Skeen, L. C., and Hall, W. C. Efferent projections on the main and the accessory olfactory bulb in the tree shrew (Tupaia glis). J. Comp. Neurol., 1977, 172, 1–36.Google Scholar
  160. Sprague, J., and Meikle, T. The role of the superior colliculus in visually guided behavior. Exp. Neurol., 1965, 11, 115–146.Google Scholar
  161. Sprague, J., Berlucchi, G., and DiBerardino, A. C. The superior colliculus and pretectum in visually guided behavior and visual discrimination in the cat. Brain Behav. Evol., 1970, 3, 285.Google Scholar
  162. Stebbins. W. C. (ed.). Animal Psychophysics: The Design and Conduct of Sensory Experiments. Appleton Century-Crofts, New York, 1970.Google Scholar
  163. Stephan, F. K., and Nunez, A. A. Elimination of circadian rhythms in drinking, activity, sleep and temperature by isolation of the suprachiasmatic nuclei. Behav. Biol., 1977, 20, 1–16.Google Scholar
  164. Stewart, W. A., and King, R. B. Fiber projections from the nucleus caudalis of the spinal trigeminal nucleus. J. Comp. Neurol., 1963, 121, 271–286.Google Scholar
  165. Strominger, N. L., Nelson, R., and Dougherty, W. J. Second order auditory pathways in the chimpanzee. J. Comp. Neurol., 1977, 172, 349–366.Google Scholar
  166. Suzuki, N., and Tucker, D., Amino acids as olfactory stimuli in freshwater catfish, Ictalurus catus (Linn.). Compo Biochem. Physiol., 1971, 40, 399–404.Google Scholar
  167. Swanson, L. W., Cowan, W. M., and Jones, E. G. An autoradiographic study of the efferent connections of the ventral lateral geniculate nucleus in the albino rat and the cat. J. Comp. N eurol., 1974, 156, 143–164.Google Scholar
  168. Tansley, K. Vision. Symp. Soc. Exp. Biol., 1950, 4, 19–34.Google Scholar
  169. Tansley, K. Vision in Vertebrates. Chapman and Hall, London, 1965.Google Scholar
  170. Tigges, J. Untersuchungen iiber den Farbensinn von Tupaia glis. (Diard 1820). Z. Morphol. Anthropol., 1963, 53, 109–123.Google Scholar
  171. Todd, J. H., Atema, J., and Bardach, J. E. Chemical communication in social behavior of a fish, the yellow bullhead Ictalurus natalis. Science, 1967, 158, 672–673.Google Scholar
  172. Truex, R. C., Taylor, M. J., Smythe, M. O., and Gildenberg, P. L. The lateral cervical nucleus of cat, dog and man. J. Comp. Neurol., 1970, 139, 93–104.Google Scholar
  173. Tucker, D., Nonolfactory responses from the nasal cavity: Jacobson’s organ and the trigeminal system. In L. M. Beidler (ed.), Handbook of Sensory Physiology, Vol. IV, Part 1. Springer-Verlag, New York, 1971, pp. 151–181.Google Scholar
  174. Tucker, D., and Smith, J. C. Vertebrate olfaction. In Masterton et al. (eds.), Evolution of Brain and Behavior in Vertebrates, Wiley, New York, 1976, pp. 25–52.Google Scholar
  175. Tucker, D., and Suzuki, N. Olfactory responses to schreckstoff of catfish. In D. Schneider, (ed.), Olfaction and Taste IV. Wissenschaftliche Verlagesellschaft MBH, Stuttgart, 1972, pp. 121–127.Google Scholar
  176. van Noort, J. The Structure and Connections ofthe Inferior Colliculus: An Investigation of the Lower Auditory System. Van Gorcum, Assen, 1969.Google Scholar
  177. Vesselkin, N. P., Agayan, A. L., and Nomokonova, L. M. A study of thalamo-telencephalic afferent systems in frogs. Brain Behav. Evol., 1971, 4, 295–306.Google Scholar
  178. Walls, G. L. Origin of the vertebrate eye. Arch. Ophthalmol., 1939, 22,452.Google Scholar
  179. Walls, G. The Vertebrate Eye and Its Adaptive Radiation. Cranbrook Institute, Bloomfield Hills, Mich., 1942, pp. 207–209.Google Scholar
  180. Ward, J. P., and Masterton, B. Encephalization and visual cortex in the tree shrew. Brain Behav. Evol., 1970, 3, 421–469.Google Scholar
  181. Warkentin, J. The visual acuity of some vertebrates. Psychol. Bull. 1937, 34, 793.Google Scholar
  182. Welker, W. I., and Seidenstein, S. Somatic sensory representation in the cerebral cortex of the raccoon (Procyon lotor). J. Comp. Neurol., 1959, 111, 469–501.Google Scholar
  183. Wever, E. G. Origin and evolution of the ear in vertebrates. In R. B. Masterton, M. E. Bitterman, C. B. G. Campbell, and N. Notten (eds.), Evolution ofBrain and Behavior in Vertebrates. Wiley, New York, 1976, pp. 89–106.Google Scholar
  184. Wever, E. G., and Werner, Y. L. The functions of the middle ear in lizards: Crotophytus collaris (Iguanidae). J. Exp. Zool., 1970, 175, 327–342.Google Scholar
  185. Woolsey, C. N., Organization of cortical auditory system: A review and a synthesis. In G. L. Rasmussen and W. F. Windle (eds.), Neural Mechanisms of the Auditory and Vestibular Systems. Thomas, Springfield, Ill., 1960.Google Scholar
  186. Woolsey, C. N., and Fairman, D. Contralateral, ipsilateral and bilateral representation of cutaneous receptors in somatic area I and II of the cerebral cortex of pig, sheep and other mammals. Surgery, 1946, 19, 684–702.Google Scholar
  187. Woolsey, T. A., Welker, C., and Schwartz, R. H. Comparative natomical studies of the sml face cortex with special reference to the occurrence of “barrels” in layer IV. J. Compo Neurol., 1975, 164, 7994.Google Scholar
  188. Zeki, S. M. Representation of central visual fields in prestriate cortex of monkey. Brain Res., 1969, 14, 271–291.Google Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • R. Bruce Masterton
    • 1
  • K. K. Glendenning
    • 1
  1. 1.Department of PsychologyFlorida State UniversityTallahasseeUSA

Personalised recommendations