Advertisement

Rotational Diffusion in the Nematic Phase: Part I

  • K. S. Chu
  • B. L. Richards
  • D. S. Moroi
  • W. M. Franklin

Abstract

A theoretical expression for the rotational diffusion coefficient in the nematic phase is derived in this part of the work. The calculations are based on the time dependent angular distribution function which is obtained by solving a Vlasov-type equation including the effect of molecular collisions, A perturbation technique of the Bhatnager-Gross-Krook (BGK) model is used for the collision term and for the linearization of the equation.

Keywords

Prefer Direction Nematic Liquid Crystal Perturbation Technique Nematic Phase Elliptical Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Vlasov, Many-Particale Theory, Moscow-Leningrad, 1950, trans. AEC-tr-3406, Washington, D.C., 1959. Earlier paper: A. A. Vlasov, J. Exp. Theoret. Phys. (USSR), 8, 291(1938)Google Scholar
  2. 2.
    Kenji K. Kobayashi, Wilbur M. Franklin, and David S. Moroi, Phys. Rev., A 7, 1781(1973).CrossRefGoogle Scholar
  3. 3.
    P. L. Bhatnager, E. P. Gross, and M. Krook, Phys. Rev., 94, 511(1954).CrossRefGoogle Scholar
  4. 4.
    W. Maier and A. Saupe, Zeitschrift fur Naturforschung 14A, 511(1954).Google Scholar
  5. 5.
    G. W. Gray, “Molecular Structure and Properties of Liquid Crystals”, (Academic Press Inc., N. Y., N. Y., 1969).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • K. S. Chu
    • 1
  • B. L. Richards
    • 1
  • D. S. Moroi
    • 1
  • W. M. Franklin
    • 1
  1. 1.Department of Physics and Liquid Crystal InstituteKent State UniversityKentUSA

Personalised recommendations