Phase Diagram of Mixed Mesomorphic Benzylideneanilines — MBBA/EBBA

  • George W. Smith
  • Zack G. Gardlund
  • Ralph J. Curtis


The crystal-nematic transition of binary mixtures of MBBA and EBBA is strongly sensitive to thermal history. A metastable phase (β-phase) has a eutectic-like minimum melting point of about -14°. However, a sample maintained at -18°C for about one day -will convert to a stable phase (α-phase) with a minimum melting temperature of 13°C. The stable phase seems to be a solid solution. The crystal-nematic latent heat of transformation LKN for the α-phase is linearly dependent on concentration, but that for the β-phase has a minimum, The concentration-dependence of the nematic-isotropic transition temperature is similar to that reported elsewhere for other systems. The nematic-isotropic latent heat of transition is essentially linearly dependent on concentration.


Differential Scanning Calorimetry Metastable Phase Melting Behavior Adiabatic Calorimetry Differential Scanning Calorimetry Peak 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. L. Fishel and Y. Y. Hsu, J. Chem. Soc. D 1971 1557.Google Scholar
  2. 2.
    Riedel-deHaën Organic Chemical Catalog, 1970.Google Scholar
  3. 3.
    E. M. Barrall II, K. E. Bredfeldt, and M. J. Vogel, Fourth International Liquid Crystal Conference, Kent State University, Kent, Ohio, 21–25 August 1972.Google Scholar
  4. 4.
    S. Kobayashi, T. Shimojo, K. Kasano, and I. Tsunda, Digest of Technical Papers, 1972 Society for Information Displays International Symposium, 6–8 June 1972, San Francisco; p. 68.Google Scholar
  5. 5.
    H. Kelker and B. Scheurle, Angew. Chem. 81, 903 (1969)CrossRefGoogle Scholar
  6. 5a.
    H. Kelker and B. Scheurle, [Internat. Ed. 8, 276 (1969)].CrossRefGoogle Scholar
  7. 6.
    H. Kelker, B. Scheurle, R. Hartz, and W. Bartsch, Angew. Chem. 82, 984 (1970).CrossRefGoogle Scholar
  8. 6a.
    H. Kelker, B. Scheurle, R. Hartz, and W. Bartsch, [Internat. Ed. 9, 962 (1970)].CrossRefGoogle Scholar
  9. 7.
    J. B. Flannery and W. Haas, J.Phys.Chem. 74, 3611 (1970).CrossRefGoogle Scholar
  10. 8.
    G. W. Smith, Z. G. Gardlund, and R. J. Curtis, Mole Cryst. and Liq. Cryst. 19, 327 (1973).CrossRefGoogle Scholar
  11. 9.
    J.T.S. Andrews (private communication).Google Scholar
  12. 10.
    See, for example: R. S. Porter, E. M. Barrall II, and J. F. Johnson, Accounts of Chem. Res. 2, 53 (1969);CrossRefGoogle Scholar
  13. 10a.
    R. D. Ennulat in “Analytical Calorimetry, Vol. I”, R. S. Porter and J. F. Johnson, eds., Plenum Press (N.Y.), 1970, p.219 ff.Google Scholar
  14. 11.
    E. C. Hsu and J. F. Johnson, Mole Cryst. and Liq. Cryst. 20, 177 (1973).CrossRefGoogle Scholar
  15. 12.
    Values in certain concentration ranges (x~0.4 to 0.5, x~0.7 to 0.95) are particularly rough because of structure in the DSC peaks.Google Scholar
  16. 13.
    J. H. Hildebrand and R. L. Scott, “The Solubility of Nonelectrolytes”, (Reinhold, New York, 1950), p. 300 ff.Google Scholar
  17. 14.
    R. L. Humphries, P. G. James, and G. R. Luckhurst, Far. Soc. Symposium No. 5, 107 (1971).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • George W. Smith
    • 1
  • Zack G. Gardlund
    • 1
  • Ralph J. Curtis
    • 1
  1. 1.General Motors Research LaboratoriesWarrenUSA

Personalised recommendations