Electric Field Effects in the Nematic and Smectic Phases of P-N-Nonyloxybenzoic Acid

  • L. S. Chou
  • E. F. Carr


Samples of p-n-nonyloxybenzoic acid have shown a positive conductivity anisotropy in the nematic phase immediately after heating from the solid, but after a number of hours the anisot-ropy changed to negative. A possible explanation for this change is the formation of clusters of molecules by polymerization. The clusters could be linear polymers involving hydrogen bonds. A study of the temperature dependence of the conductivity anisotropy indicated that other mechanisms are involved such as the formation of cybotactic groups involving dimers. Molecular alignment due to ionic conductivity is discussed in both the nematic and smectic phases. The dielectric anisotropy which is positive in the nematic phase decreases with decreasing temperature and reverses sign as the material enters the smectic phase.


Dielectric Loss External Electric Field Nematic Phase Molecular Axis Molecular Alignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. P. McLemore and E. F. Carr, J. Chem. Phys. 57, 3245 (1972).CrossRefGoogle Scholar
  2. 2.
    A. De Vries, Mol. Cryst. Liq. Cryst. 10, 219 (1970).CrossRefGoogle Scholar
  3. 3.
    F. Rondelez, Solid State Comm. 11, 1675 (1972).CrossRefGoogle Scholar
  4. 4.
    E. F. Carr, Mol. Cryst. and Liq. Cryst. 13, 27 (1971).CrossRefGoogle Scholar
  5. 5.
    L. S. Chou and E. F. Carr, Phys. Rev. A, 7, 1639 (1973).CrossRefGoogle Scholar
  6. 6.
    L. S. Chou and E. F. Carr, Bull. Am. Phys. Soc. 18, 437(1973).Google Scholar
  7. 7.
    E. F. Carr and L. S. Chou, J. Appl. Phys. (to be published July 1973).Google Scholar
  8. 8.
    E. F. Carr, Adv. Chem. Ser. 63, 76 (1967).Google Scholar
  9. 9.
    G. W. Gray, Molecular Structure and the Properties of Liquid Crystals, Academic Press, Inc.(London). Ltd., London (1962).Google Scholar
  10. 10.
    C. C. Gravatt and G. W. Brady, Mol. Cryst. and Liq. Cryst. 7, 355 (1969);CrossRefGoogle Scholar
  11. 10a.
    T. W. Stinson and J. D. Litster, Phys. Rev. Lett. 25, 503 (1970);CrossRefGoogle Scholar
  12. 10b.
    B. Chu, C. S. Bak. and F. L. Lin, Phys. Rev. Lett. 28, 1111 (1972).Google Scholar
  13. 11.
    W. Maier and G. Meier, Z. Naturforsch, A 16, 1200. (1961).Google Scholar
  14. 12.
    Anna J. Martin, G. Meier, and A. Saupe, Symposium of the Faraday Society, No. (5), 119 (1971).Google Scholar
  15. 13.
    B. Delodre and B. Cabane, Mol. Cryst. Liq. Cryst. 19, 25 (1972).CrossRefGoogle Scholar
  16. 14.
    T. R. Taylor, J. L. Fergason, and S. L. Arora, Phys. Rev. Lett. 24, 359 (1970).CrossRefGoogle Scholar
  17. 15.
    E. F. Carr, Mol. Cryst. Liq. Cryst. 7, 253 (1969).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • L. S. Chou
    • 1
  • E. F. Carr
    • 1
  1. 1.Department of PhysicsUniversity of MaineOronoUSA

Personalised recommendations