Electro-Optical Properties of Imperfectly Ordered Planar Cholesteric Layers

  • C. J. Gerritsma
  • P. van Zanten


The electro-optical behaviour of imperfectly ordered planar layers of a mixture of 20% cholesteryl chloride and 80% cholesteryl oleyl carbonate (natural pitch p0 = 0.37 µm) is discussed. Microscopic observations reveal that these layers consist of a number of uniform planar regions with different pitch (p ≠ p0), separated by disclinations. With increasing layer thickness these regions become smaller while the differences in pitch decrease. The electric-field-indueed blue shift of the selective reflections is suggested as resulting from a successive distortion of the planar regions. The observed decrease in blue shift with increasing layer thickness, as well as the absence of this shift in regions with uniform pitch, demonstrate the correlation between the blue shift and the field-induced periodic distortion.


Blue Shift Planar Region Periodic Perturbation Planar Texture Selective Reflection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hl. de Vries, Acta Cryst. 4, 219 (1951).CrossRefGoogle Scholar
  2. 2.
    J. Pergason, Liquid Crystals, Gordon and Breach, New York (1967)5 p. 89. This work was presented at the 1st Int. Conference on Liquid Crystals, Kent, Ohio, August 1965.Google Scholar
  3. 3.
    W.J. Harper, Liquid Crystals, Gordon and Breach, New York (1967), p. 121.Google Scholar
  4. 4.
    J.R. Hansen and R.J. Schneeberger, IEEE Trans. Electron Devices, Vol. ED-15, 896 (1968).CrossRefGoogle Scholar
  5. 5.
    C.J. Gerritsma and P. van Zanten, Mol. Cryst. 15, 257 (1971).CrossRefGoogle Scholar
  6. 6.
    G.A. Dir et al., Proc. Intern. Symposium of the Society for information display, Philadelphia (1971) p. 132.Google Scholar
  7. 7.
    N. Oron and M.M. Labes, Appl. Phys. Lett. 21, 243 (1972).CrossRefGoogle Scholar
  8. 8.
    R.B. Meyer, Appl. Phys. Lett. 12, 281 (1968).CrossRefGoogle Scholar
  9. 9.
    F.M. Leslie, Mol. Cryst. 12, 57 (1970).CrossRefGoogle Scholar
  10. 10.
    C.J. Gerritsma and P. van Zanten, Phys. Lett. 42A, 329 (1972).Google Scholar
  11. 11.
    C.J. Gerritsma and P. van Zanten, Phys. Lett. 37A, 47 (1971).Google Scholar
  12. 12.
    F. Rondelez and H. Arnould, C.R. Acad. Sci., Ser. B237, 549 (1971).Google Scholar
  13. 13.
    W. Helfrich, Appl. Phys. Lett., 17, 531 (1970).CrossRefGoogle Scholar
  14. 14.
    W. Helfrich, J. Chem. Phys., 55, 839 (1971).CrossRefGoogle Scholar
  15. 15.
    J. P. Hurault, J. Chem. Phys., to be published August 1973.Google Scholar
  16. 16.
    F. Rondelez, H. Arnould and C.J. Gerritsma, Phys. Rev. Lett., 28, 735 (1972).CrossRefGoogle Scholar
  17. 17.
    T.J. Scheffer, unpublished results.Google Scholar
  18. 18.
    T.J. Scheffer, Phys. Rev. Lett., 28, 593 (1972).CrossRefGoogle Scholar
  19. 19.
    P. Kassubek and G. Meier, Mol. Cryst., 8, 305 (1969).CrossRefGoogle Scholar
  20. 20.
    C.J. Gerritsma, W.J.A. Goossens and A.K. Niessen, Phys. Lett., 34A, 354 (1971).Google Scholar
  21. 21.
    Orsay Liquid Crystal Group, Phys. Lett., 28A, 687 (1969)Google Scholar
  22. 21a.
    Orsay Liquid Crystal Group, J. Phys. C 30, 38 (1969).Google Scholar
  23. 22.
    J.E. Adams, W. Haas and J. Wysocki, J. Chem. Phys. 50, 2458 (1969).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • C. J. Gerritsma
    • 1
  • P. van Zanten
    • 1
  1. 1.Philips Research LaboratoriesEindhovenNetherlands

Personalised recommendations