Nuclear Magnetic Resonance in Polypeptide Liquid Crystals

  • William A. Hines
  • Edward T. Samulski


Some twenty years ago it was found that synthetic polypeptides, Open image in new window , can exist as rigid, rodlike α-helical molecules, in contrast with the random coil conformation adopted by most other synthetic polymers in solution. This observation with its implications in the study of protein structure stimulated a concentrated and sustained investigation of the dilute solution (1–5 wt.% polymer) properties of this class of polymers. In more concentrated polypeptide solutions (10–15 wt.% polymer), poly (γ-benzyl-L-glutamate) (PBLG; R = CH2CH2COOCH2C6H5), forms a lyotropic liquid crystal. Robinson1 extensively characterized the PBLG liquid crystal and found similarities between its supra-molecular structure and the structure existing in thermotropic cholesteric liquid crystals.


Liquid Crystal Relaxation Rate Free Induction Decay Larmor Frequency Random Coil Conformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Robinson, Mol. Cryst. 1, 467 (1966) and ref. cited therin.CrossRefGoogle Scholar
  2. 2.
    L. Onsager, Ann. N. Y. Acad. Sci..56, 627 (1949).CrossRefGoogle Scholar
  3. 3.
    P. J. Flory, Proc. Roy. Soc. A 243, 73 (1956).Google Scholar
  4. 4.
    J. P. Straley, Mol. Cryst. and Liq. Cryst., In Press.Google Scholar
  5. 5.
    W. G. Rothschild, Macromolecules 5, 37 (1972).CrossRefGoogle Scholar
  6. 6.
    W. A. Hines and E. T. Samulski, Macromoleculeg, In Press.Google Scholar
  7. 7.
    J. E. Anderson, K-J. Liu and R. Ullman, Discuss. Faraday Soc. 49, 175 (1970).CrossRefGoogle Scholar
  8. 8.
    S. Sobajima, J. Phys. Soc. Japan 23, 1070 (1967);CrossRefGoogle Scholar
  9. 8a.
    M. Panar and W. D. Phillips, J. Amer. Chem. Soc. 90, 3380 (1968);CrossRefGoogle Scholar
  10. 8b.
    E. T. Samulski and A. V. Tobolsky, Macromolecules 1, 555 (1968) andCrossRefGoogle Scholar
  11. 8c.
    E. T. Samulski and A. V. Tobolsky, Biopolymers 10, 1013 (1971).CrossRefGoogle Scholar
  12. 9.
    E. T. Samulski, B. A. Smith and C. G. Wade, Chem. Phys. Letters 20, 167 (1973).CrossRefGoogle Scholar
  13. 10.
    R. Kimmich and F. Noack, Ber. Bun.-Gesellschaft. 75, 269 (1971).Google Scholar
  14. 11.
    S. H. Koenig and W. E. Schillinger, J. Biol. Chem. 244, 3283 (1969).Google Scholar
  15. 12.
    A. F. Martins, Phys. Rev. Letters 28, 289 (1972).CrossRefGoogle Scholar
  16. 13.
    J. F. Harmon and B. H. Muller, Phys. Rev. 182, 400 (1969).CrossRefGoogle Scholar
  17. 14.
    C. Robinson, J. C. Ward and R. B. Beevers, Discuss. Faraday Soc. 25, 29 (1958).CrossRefGoogle Scholar
  18. 15.
    S. Broersma, J. Chem. Phys. 32, 1626, 1632 (1960).CrossRefGoogle Scholar
  19. 16.
    A. Abragam, The Principles of Nuclear Magnetism, Chapter VIII, Oxford (1961).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • William A. Hines
    • 1
  • Edward T. Samulski
    • 1
  1. 1.Departments of Physics and Chemistry and Institute of Materials ScienceUniversity of ConnecticutStorrsUSA

Personalised recommendations