Studies on the Molecular Arrangement in Liquid Crystals by Polarization of Fluorescence

  • S. Sakagami
  • A. Takase
  • M. Nakamizo
  • H. Kakiyama


Molecular arrangements in liquid crystals have been studied by the method of fluorescence polarization. Fluorescence molecules with a highly optical anisotropy, dispersed homogeneously in a liquid crystalline material are used as a probe to detect the molecular alignment in the liquid crystal« The angular distribution of the polarized components of the fluorescence gives useful information on the extent as well as the types of molecular orientation. Examples of the application of this method are given for the determination of the molecular arrangement in liquid crystals at the phase transitions from the isotropic liquid state through mesomorphic state to the crystalline state. The results obtained for the nematic state of para-n-octyloxybenzoic acid suggest that the molecules can be regarded as adopting almost perfect parallel alignment over regions much larger than the molecular dimensions. The observed angular distribution patterns of the polarized components of fluorescence can be well explained by assuming a molecular arrangement of uniaxial prolate ellipsoid for the nematic state. Discussion is briefly given to the angular distribution patterns for the smectic and crystalline states.


Liquid Crystal Angular Distribution Molecular Orientation Fluorescent Molecule Electric Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. H. Heilmeier, J. A. Castellano and L. A. Zanoni, Mol. Cryst. Liquid Cryst., 8, 293 (1969)CrossRefGoogle Scholar
  2. 1a.
    G. H. Heilmeier and L. A. Zanoni, Appl. Phys, Letters, 13, 91 (1968)CrossRefGoogle Scholar
  3. 2.
    Y. Nishijima, Y. Onqgi and T. Asai, J. Polymer Sci,, Part C, No, 15, 237 (1966) Y. Nishijima, ibid., Part C, No. 31, 353 (1970)Google Scholar
  4. 3.
    P. Pringsheim, “Fluorescence and Phosphorescence”, Interscience, New York (1949)Google Scholar
  5. 4.
    P. P. Feofilov, “The Physical Basis of Polarized Emission”, Consultants Bureau, New York (l961)Google Scholar
  6. 5.
    Y. Nishijiraa, Ber, Bunsen-gesellschaft, 74, 778 (1970)Google Scholar
  7. 6.
    G. R. Luckhurst and F. Sundholm, Mol. Phys., 21, 349 (1971)CrossRefGoogle Scholar
  8. 7.
    S. Diele, P. Brand, and H. Sackroann, Mol. Ciyst. Liquid Cxyst., 16, 105 (1972)CrossRefGoogle Scholar
  9. 8.
    J. G. Chistyakov and W. M. Chaikowsky, ibid., 7, 269 (1969).CrossRefGoogle Scholar
  10. 9.
    T. R. Taylor, J. L. Fergason, and S. L. Arora. Phys. Rev. Lett., 24, 359 (1970)CrossRefGoogle Scholar
  11. 10.
    T. R. Taylor, S. L. Arora, and J. L. Fergason, ibid., 25, 722 (1970)CrossRefGoogle Scholar
  12. 11.
    11, H. Saekmann and D, Deaus, Mol. Cry st., 2, 81 (1966)CrossRefGoogle Scholar
  13. 12.
    12, E. F. Carr, Mol. Cryst. Liquid Cryst., 13, 27 (1971)CrossRefGoogle Scholar
  14. 13.
    A. Saupe, Mol. Cryst. Liquid Cryst., 16, 87 (1972)CrossRefGoogle Scholar
  15. 14.
    A. Saupe, Mol. Cxyst. Liquid Cryst., 7, 59 (1969)CrossRefGoogle Scholar
  16. 15.
    S. Sakagami, A. Takase, M. Nakamizo, and H. Kakiyama, Mol. Cryst. Liquid Cryst., 19, 303 (1973).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • S. Sakagami
    • 1
  • A. Takase
    • 1
  • M. Nakamizo
    • 1
  • H. Kakiyama
    • 1
  1. 1.National Industrial Research Institute of KyushuTosu-shi, Saga-ken 841Japan

Personalised recommendations