Advertisement

Bacteriophages That Contain Lipid

  • Leonard Mindich
Part of the Comprehensive Virology book series (CV, volume 12)

Abstract

The several types of lipid-containing bacteriophages that have been described so far do not constitute a natural grouping. They differ from each other in many ways including host range, nucleic acid type, mode of attachment to host cells, and location of the lipid in the virion. It is, however, useful to discuss them together since they are likely to prove of immense value in the elucidation of lipid-protein interactions and the biogenesis of structures containing lipid. The anticipated advantages of these viruses for the study of “membrane biology” are to be found in their rather simple and probably stoichiometric composition with respect to proteins and nucleic acids, which is characteristic of almost all viruses, as well as the ease of preparing large amounts of virus material for structural work and the possibility of isolating conditional-lethal mutants that will facilitate the investigation of the morphogenetic pathways employed by these viruses.

Keywords

Nonsense Mutant Buoyant Density Early Protein Mature Virion Glycine Ethyl Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acs, G., Klett, H., Schonberg, M., Christman, J., Levin, D. H., and Silverstein, S. C., 1971, Mechanism of reovirus double-stranded ribonucleic acid synthesis in vivo and in vitro, J. Virol. 8:684–689.PubMedGoogle Scholar
  2. Ball, L. A., and Kaesberg, P., 1973, A polarity gradient in the expression of the repli-case gene of RNA bacteriophage Qβ, J. Mol. Biol. 74:547–562.PubMedCrossRefGoogle Scholar
  3. Bamford, D. H., Palva, E. T., and Lounatmaa, K., 1976, Ultrastructure and life cycle of the lipid-containing bacteriophage ϕ6, J. Gen. Virol. 32:249–259.PubMedCrossRefGoogle Scholar
  4. Bell, R. M., Mavis, R. D., Osborn, M. J., and Vagelos, P. R., 1971, Enzymes of phospholipid metabolism: Localization in the cytoplasmic and outer membrane of the cell envelope of Escherichia coli and Salmonella typhimurium, Biochim. Biophys. Acta 249:628–635.PubMedCrossRefGoogle Scholar
  5. Bowman, B. U., Jr., Newman, H. A. I., Moritz, J. M., and Koehler, R. M., 1973, Properties of mycobacteriophage DS6A. II. Lipid composition, Am. Rev. Resp. Dis. 107:42–49.PubMedGoogle Scholar
  6. Bradley, D. E., 1976, Adsorption of the R-specific bacteriophage PR4 to pili determined by a drug resistance plasmid of the W compatibility group, J. Gen. Microbiol. 95:181–185.PubMedGoogle Scholar
  7. Bradley, D. E., and Rutherford, E. L., 1975, Basic characterization of lipid-containing bacteriophage specific for plasmids of the P, N, and W compatibility groups, Can. J. Microbiol. 21:152–163.PubMedCrossRefGoogle Scholar
  8. Brady, G. W., Fein, D. B., and Brumberger, H., 1976, X-ray diffraction studies of circular superhelical DNA at 300-10,000 A resolution, Nature (London) 264:231–234.CrossRefGoogle Scholar
  9. Braunstein, S., and Franklin, R. M., 1971, Structure and synthesis of a lipid-containing bacteriophage. V. Phospholipids of the host BAL-31 and of the bacteriophage PM2, Virology 43:685–695.PubMedCrossRefGoogle Scholar
  10. Bretscher, M. S., 1973, Membrane structure: Some general principles, Science 181:622–629.PubMedCrossRefGoogle Scholar
  11. Brewer, G. J., 1976, Control of membrane morphogenesis in bacteriophage PM2, J. Supramol. Struct. 5:73–79.PubMedCrossRefGoogle Scholar
  12. Brewer, G. J., and Singer, S. J., 1974, On the disposition of the proteins of the membrane-containing bacteriophage PM2, Biochemistry 13:3580–3588.PubMedCrossRefGoogle Scholar
  13. Cadden, S. P., and Sands, J. A., 1976, Proteins of a lipid containing bacteriophage which replicates in Escherichia coli: Phage PR4, Abst. Annu. Meet. Am. Soc. Microbiol., S20, p. 207.Google Scholar
  14. Camerini-Otero, R. D., and Franklin, R. M., 1972, Structure and synthesis of a lipid-containing bacteriophage. XII. The fatty acids and lipid content of bacteriophage PM2, Virology 49:385–393.PubMedCrossRefGoogle Scholar
  15. Camerini-Otero, R. D., and Franklin, R. M., 1975, Structure and synthesis of a lipid-containing bacteriophage. XVII. The molecular weight and other physical properties of bacteriophage PM2, Eur. J. Biochem. 53:343–348.PubMedCrossRefGoogle Scholar
  16. Camerini-Otero, R. D., Datta, A., and Franklin, R. M., 1972, Structure and synthesis of a lipid-containing bacteriophage. XI. Studies on the structural glycoprotein of the virus particle, Virology 49:522–536.PubMedCrossRefGoogle Scholar
  17. Capaldi, R. A., and Vanderkooi, G., 1972, The low polarity of many membrane proteins, Proc. Natl. Acad. Sci. U.S.A. 69:930–932.PubMedCrossRefGoogle Scholar
  18. Casjens, S., and King, J., 1975, Virus assembly, Annu. Rev. Biochem. 44:555–611.PubMedCrossRefGoogle Scholar
  19. Coplin, D. L., Van Etten, J. L., Koski, R. K., and Vidaver, A. K., 1975, Intermediates in the biosynthesis of double-stranded ribonucleic acids of bacteriophage ϕ6, Proc. Natl. Acad. Sci. U.S.A. 72:849–853.PubMedCrossRefGoogle Scholar
  20. Coplin, D. L., Van Etten, J. L., and Vidaver, A. K., 1976, Synthesis of bacteriophage ϕ6 double-stranded ribonucleic acid, J. Gen. Virol. 33:509–512.PubMedCrossRefGoogle Scholar
  21. Cota-Robles, E., Espejo, R. T., and Haywood, P. W., 1968, Ultrastructure of bacterial cells infected with bacteriophage PM2, a lipid-containing bacterial virus, J. Virol. 2:56–68.PubMedGoogle Scholar
  22. Dahlberg, J. E., and Franklin, R. M., 1970, Structure and synthesis of a lipid-containing bacteriophage. IV. Electron microscopic studies of PM2-infected Pseudomonas BAL-31, Virology 42:1073–1086.PubMedCrossRefGoogle Scholar
  23. Dales, S., and Mosbach, E. H., 1968, Vaccinia as a model for membrane biogenesis, Virology 35:564–583.PubMedCrossRefGoogle Scholar
  24. Datta, A., Camerini-Otero, R. D., Braunstein, S. N., and Franklin, R. M., 1971, Structure and synthesis of a lipid-containing bacteriophage. VII. Structural proteins of bacteriophage PM2, Virology 45:232–239.PubMedCrossRefGoogle Scholar
  25. Diedrich, D. L., and Cota-Robles, E. H., 1974, Heterogeneity in lipid composition of the outer membrane and cytoplasmic membrane of Pseudomonas BAL-31, J. Bacte-riol. 119:1006–1018.Google Scholar
  26. Diedrich, D. L., and Cota-Robles, E. H., 1976, Phospholipid metabolism in Pseudomonas BAL-31 infected with lipid-containing bacteriophage PM2, J. Virol. 19:446–456.PubMedGoogle Scholar
  27. Edgar, R. A., Denhardt, G. H., and Epstein, R. H., 1964, A comparative genetic study of conditional lethal mutations of bacteriophage T4D, Genetics 49:635–658.PubMedGoogle Scholar
  28. Ellis, L. F., and Schlegel, R. A., 1974, Electron microscopy of Pseudomonas ϕ6 bacteriophage, J. Virol. 14:1547–1551.PubMedGoogle Scholar
  29. Espejo, R. T., and Canelo, E. S., 1968a, Properties of bacteriophage PM2: A lipid-containing bacterial virus, Virology 34:738–747.PubMedCrossRefGoogle Scholar
  30. Espejo, R. T., and Canelo, E. S., 1968b, Origin of phospholipid in bacteriophage PM2, J. Virol. 2:1235–1240.PubMedGoogle Scholar
  31. Espejo, R. T., and Canelo, E. S., 1968c, Properties and characterization of the host bacterium of bacteriophage PM2, J. Bacteriol. 95:1887–1891.PubMedGoogle Scholar
  32. Espejo, R. T., and Canelo, E. S., 1969, The DNA of bacteriophage PM2: Ultra-centrifugal evidence for a circular structure, Virology 37:495–498.PubMedCrossRefGoogle Scholar
  33. Espejo, R. T., Canelo, E. S., and Sinsheimer, R. L., 1969, DNA of bacteriophage PM2: A closed circular double-stranded molecule, Proc. Natl. Acad. Sci. U.S.A. 63:1164–1168.PubMedCrossRefGoogle Scholar
  34. Espejo, R. T., Canelo, E. S., and Sinsheimer, R. L., 1971a, Replication of bacteriophage PM2 deoxyribonucleic acid: A closed circular double-stranded molecule, J. Mol. Biol. 56:597–621.PubMedCrossRefGoogle Scholar
  35. Espejo, R. T., Espejo-Canelo, E., and Sinsheimer, R. L., 1971b, A difference between intracellular and viral supercoiled PM2 DNA, J. Mol. Biol. 56:623–626.PubMedCrossRefGoogle Scholar
  36. Fields, B. N., and Joklik, W. K., 1969, Isolation and preliminary genetic and biochemical characterization of temperature-sensitive mutants of reovirus, Virology 37:335–342.PubMedCrossRefGoogle Scholar
  37. Fiers, W., 1975, Chemical structure and biological activity of bacteriophage MS2 RNA, in: RNA Phages (N. D. Zinder, ed.), pp. 353–396, Cold Spring Harbor Laboratory, Cold Spring Harbor.Google Scholar
  38. Franklin, R. M., 1974, Structure and synthesis of bacteriophage PM2, with particular emphasis on the viral lipid bilayer, Curr. Top. Microbiol. Immunol. 68:108–159.Google Scholar
  39. Franklin, R. M., 1976, PM2 bacteriophage as a model for the structure and synthesis of lipid membranes, Cell Surface Rev. (in press).Google Scholar
  40. Franklin, R. M., Salditt, M., and Silbert, J. A., 1969, Structure and synthesis of a lipid-containing bacteriophage. I. Growth of bacteriophage PM2 and alterations in nucleic acid metabolism in the infected cell, Virology 38:627–640.PubMedCrossRefGoogle Scholar
  41. Franklin, R. M., Hinnen, R., Schäfer, R., and Tsukagoshi, N., 1976, Structure and assembly of lipid-containing viruses, with special reference to bacteriophage PM2 as one type of model system, Phil. Trans. R. Soc. London. Ser. B 276:63–80.CrossRefGoogle Scholar
  42. Gilbert, W., and Dressier, D., 1968, DNA replication: The rolling circle model, Cold Spring Harbor Symp. Quant. Biol. 33:473–484.PubMedCrossRefGoogle Scholar
  43. Gonzalez, C. F., Langenberg, W. G., Van Etten, J. L., and Vidaver, A. K., 1976, Ultrastructure of bacteriophage ϕ6: Arrangement of dsRNA and lipid envelope, Abstr. Annu. Proc. Am. Phytopathol. Soc. Abstr., No. 223.Google Scholar
  44. Grodzicker, T., and Zipser, D., 1968, A mutation which creates a new site for the reinitiation of Polypeptide synthesis in the z gene of lac Operon of Escherichia coli, J. Mol. Biol. 38:305–314.PubMedCrossRefGoogle Scholar
  45. Happe, M., and Jockusch, H., 1975, Phage Qβ replicase: Cell-free synthesis of the phage-specific subunit and its assembly with host subunits to form active enzyme, Eur. J. Biochem. 58:359–366.PubMedCrossRefGoogle Scholar
  46. Harrison, S. C., Caspar, D. L. D., Camerini-Otero, R. D., and Franklin, R. M., 1971, Lipid and protein arrangement in bacteriophage PM2, Nature (London) New Biol. 229:197–201.Google Scholar
  47. Hinnen, R., Schäfer, R., and Franklin, R. M., 1974, Structure and synthesis of a lipid-containing bacteriophage: Preparation of virus and localization of the structural proteins, Eur. J. Biochem. 50:1–14.PubMedCrossRefGoogle Scholar
  48. Hinnen, R., Chassin, R., Schäfer, R., Franklin, R. M., Hitz, H., and Schäfer, D., 1976, Structure and synthesis of a lipid-containing bacteriophage: Purification, chemical composition, and partial sequences of the structural proteins, Eur. J. Biochem. 68:139–152.PubMedCrossRefGoogle Scholar
  49. Israelachvili, J. N., 1973, Theoretical considerations on the asymmetric distribution of charged phospholipid molecules on the inner and outer layers of curved bilayer membranes, Biochim. Biophys. Acta 323:659–663.PubMedCrossRefGoogle Scholar
  50. Laval, F., 1974, Endonuclease activity associated with purified PM2 bacteriophages, Proc. Natl. Acad. Sci. U.S.A. 71:4965–4969.PubMedCrossRefGoogle Scholar
  51. Linney, E., and Hayashi, M., 1974, Intragenic regulation of the synthesis of 0X174 gene A proteins, Nature (London) 249:345–348.CrossRefGoogle Scholar
  52. Marvin, D. H., and Hohn, B., 1969, Filamentous bacterial viruses, Bacteriol. Rev. 33:172–209.PubMedGoogle Scholar
  53. McDowell, M. J., Jöklik, W. K., Villa-Komaroff, L., and Lodish, H. J., 1972, Translation of reovirus messenger RNAs synthesized in vitro into reovirus Polypeptides by several mammalian cell-free extracts, Proc. Natl. Acad. Sci. U.S.A. 69:2649–2653.PubMedCrossRefGoogle Scholar
  54. Michaelson, D. M., Horwitz, A. F., and Klein, M. P., 1973, Transbilayer asymmetry and surface homogeneity of mixed phospholipids in cosonicated vesicles, Biochemistry 12:2637–2645.PubMedCrossRefGoogle Scholar
  55. Mindich, L., Cohen, J., and Weisburd, M., 1976a, Isolation of nonsense suppressor mutants in Pseudomonas, J. Bacteriol. 126:177–182.PubMedGoogle Scholar
  56. Mindich, L., Sinclair, J. F., Levine, D., and Cohen, J., 1976b, Genetic studies of temperature-sensitive and nonsense mutants of bacteriophage 06, Virology 75:218–223.PubMedCrossRefGoogle Scholar
  57. Mindich, L., Sinclair, J. F., and Cohen, J., 1976c, The morphogenesis of bacteriophage 06: Particles formed by nonsense mutants, Virology 75:224–231.PubMedCrossRefGoogle Scholar
  58. Morgan, E. M., and Zweerink, H. J., 1975, Characterization of transcriptase and replicase particles isolated from reovirus-infected cells, Virology 68:455–466.PubMedCrossRefGoogle Scholar
  59. Nagy, E., Prágai, B., and Ivanovics, G., 1976, Characteristics of phage AP50, an RNA phage containing phospholipids, J. Gen. Virol. 32:129–132.PubMedCrossRefGoogle Scholar
  60. Newton, A., 1969, Re-initiation of Polypeptide synthesis and polarity in the lac Operon of Escherichia coli, J. Mol. Biol. 41:329–339.PubMedCrossRefGoogle Scholar
  61. Nuss, D. L., Oppermann, H., and Koch, G., 1975, Selective blockage of initiation of host protein synthesis in RNA-virus-infected cells, Proc. Natl. Acad. Sci. U.S.A. 72:1252–1262.CrossRefGoogle Scholar
  62. Olsen, R. H., Siak, J. S., and Gray, R. H., 1974, Characteristics of PRD1, a plasmid-dependent broad host range DNA bacteriophage, J. Virol. 14:689–699.PubMedGoogle Scholar
  63. Osborne, M. J., Gander, J. E., Parisi, E., and Carson, J., 1972, Mechanism of assembly of the outer membrane of Salmonella typhimurium: Isolation and characterization of cytoplasmic and outer membrane, J. Biol. Chem. 247:3962–3972.Google Scholar
  64. Pons, M. W., 1976, A reexamination of influenza single-and double-stranded RNAs by gel electrophoresis, Virology 69:789–792.PubMedCrossRefGoogle Scholar
  65. Sakaki, Y., and Oshima, T., 1976, A new lipid-containing phage infecting acidophilic thermophilic bacteria, Virology 75:256–259.PubMedCrossRefGoogle Scholar
  66. Sands, J. A., 1973, The phospholipid composition of bacteriophage ϕ6, Biochem. Biophys. Res. Commun. 55:111–116.PubMedCrossRefGoogle Scholar
  67. Sands, J. A., 1976, Studies on the origin of the phospholipids of a lipid-containing virus which replicates in Escherichia coli: Bacteriophage PR4, J. Virol. 19:296–301.PubMedGoogle Scholar
  68. Sands, J. A., and Cadden, S. P., 1975, Phospholipids in an Escherichia coli bacteriophage, FEBS Lett. 58:43–46.PubMedCrossRefGoogle Scholar
  69. Sands, J. A., and Lowlicht, R. A., 1976, Temporal origin of viral phospholipids of the enveloped bacteriophage ϕ6, Can. J. Microbiol. 22:154–158.PubMedCrossRefGoogle Scholar
  70. Sands, J. A., Cupp, J., Keith, A., and Snipes, W., 1974, Temperature sensitivity of the assembly process of the enveloped bacteriophage ϕ6, Biochim. Biophys. Acta 373:277–285.PubMedCrossRefGoogle Scholar
  71. Scandella, C. J., Schindler, H., Franklin, R. M., and Seelig, J., 1974, Structure and synthesis of a lipid-containing bacteriophage. Acyl-chain motion in the PM2 virus membrane, Eur. J. Biochem. 50:29–32.PubMedCrossRefGoogle Scholar
  72. Schäfer, R., and Franklin, R. M. 1975a, Structure and synthesis of a lipid-containing bacteriophage: A polynucleotide-dependent polynucleotide-pyrophosphorylase activity in bacteriophage PM2, Eur. J. Biochem. 58:81–85.PubMedCrossRefGoogle Scholar
  73. Schäfer, R., and Franklin, R. M., 1975b, Structure and synthesis of a lipid-containing bacteriophage. XIX. Reconstitution of bacteriophage PM2 in vitro, J. Mol. Biol. 97:21–34.PubMedCrossRefGoogle Scholar
  74. Schäfer, R., Hinnen, R., and Franklin, R. M., 1974a, Structure and synthesis of a lipid-containing bacteriophage: Properties of the structural proteins and distribution of the phospholipid, Eur. J. Biochem. 50:15–27.PubMedCrossRefGoogle Scholar
  75. Schäfer, R., Hinnen, R., and Franklin, R. M., 1974b, Further observations on the structure of the lipid-containing bacteriophage PM2, Nature (London) 248:681–682.CrossRefGoogle Scholar
  76. Schäfer, R., Huber, U., Franklin, R. M., and Seelig, J., 1975, Structure and synthesis of a lipid-containing bacteriophage. XXI. Chemical modifications of bacteriophage PM2 and the resulting alterations in acyl-chain motion in the PM2 membrane, Eur. J. Biochem. 58:291–296.PubMedCrossRefGoogle Scholar
  77. Schonberg, M., Silverstein, S. C., Levin, D. H., and Acs, G., 1971, Asynchronous synthesis of the complementary strands of the reovirus genome, Proc. Natl. Acad. Sci. U.S.A. 68:505–508.PubMedCrossRefGoogle Scholar
  78. Semancik, J. S., Vidaver, A. K., and Van Etten, J. L., 1973, Characterization of a segmented double-helical RNA from bacteriophage ϕ6, J. Mol. Biol. 78:617–625.PubMedCrossRefGoogle Scholar
  79. Silbert, J. A., Salditt, M., and Franklin, R. M., 1969, Structure and synthesis of a lipid-containing bacteriophage. III. Purification of bacteriophage PM2 and some structural studies on the virion, Virology 39:666–681.PubMedCrossRefGoogle Scholar
  80. Simpson, R. W., and Hirst, G. K., 1968, Temperature-sensitive mutants of influenza A-virus: Isolation of mutants and preliminary observations on genetic recombination and complementation, Virology 35:41–49.PubMedCrossRefGoogle Scholar
  81. Sinclair, J. F., and Mindich, L., 1976, RNA synthesis during infection with bac-teriophage ϕ6, Virology 75:209–217.PubMedCrossRefGoogle Scholar
  82. Sinclair, J. F., Tzagoloff, A., Levine, D., and Mindich, L., 1975, Proteins of bacteriophage ϕ6, J. Virol. 16:685–695.PubMedGoogle Scholar
  83. Sinclair, J. F., Cohen, J., and Mindich, L., 1976, The isolation of suppressible nonsense mutants of bacteriophage ϕ6, Virology 75:198–208.CrossRefGoogle Scholar
  84. Snipes, W., Douthwright, J., Sands, J., and Keith, A., 1974, Control of phospholipid synthesis and viral assembly by bacteriophage PM2, Biochim. Biophys. Acta 363:340–350.PubMedCrossRefGoogle Scholar
  85. Spear, P. G., and Roizman, B., 1972, Proteins specified by herpes simplex virus. V. Purification and structural proteins of the herpes virion, J. Virol. 9:143–159.PubMedGoogle Scholar
  86. Spencer, R., 1963, Bacterial viruses in the sea, Symposium on Marine Microbiology (C. H. Oppenheimer, ed.), pp. 350–365, Thomas, Springfield, 111.Google Scholar
  87. Stanisich, V., 1974, The properties and host range of male-specific bacteriophages of Pseudomonas aeruginosa, J. Gen. Microbiol. 84:332–342.PubMedGoogle Scholar
  88. Stern, W., and Dales, S., 1974, Biogenesis of vaccinia: Concerning the origin of the envelope phospholipids, Virology 62:293–306.PubMedCrossRefGoogle Scholar
  89. Strauss, J. H., Jr., Burge, B. W., Pfefferkorn, E. R., and Darnell, J. E., Jr., 1968, Identification of the membrane protein and “core” protein of Sindbis virus, Proc. Natl. Acad. Sci. U.S.A. 59:533–537.PubMedCrossRefGoogle Scholar
  90. Studier, F. W., 1973a, Genetic analysis of non-essential bacteriophage T7 genes, J. Mol. Biol. 79:227–236.PubMedCrossRefGoogle Scholar
  91. Studier, F. W., 1973b, Analysis of bacteriophage T7 early RNA’s and proteins on slab gels, J. Mol. Biol. 79:237–248.PubMedCrossRefGoogle Scholar
  92. Tsukagoshi, N., and Franklin, R. M., 1974, Structure and synthesis of a lipid-containing bacteriophage. XIII. Studies on the origin of the viral phospholipids, Virology 59:408–417.PubMedGoogle Scholar
  93. Tsukagoshi, N., Petersen, M. H., and Franklin, R. M., 1975, Effect of unsaturated fatty acids on the lipid composition of bacteriophage PM2, Nature (London) 253:125–126.CrossRefGoogle Scholar
  94. Tsukagoshi, N., Kania, M. N., and Franklin, R. M., 1976a, Identification of acyl phosphatidylglycerol as a minor phospholipid of Pseudomonas BAL-31, Biochim. Biophys. Acta 450:131–136.PubMedGoogle Scholar
  95. Tsukagoshi, N., Petersen, M. H., Huber, U., Franklin, R. M., and Seelig, J., 1976b, Phase transitions in the membrane of a marine bacterium, Pseudomonas BAL-31, Eur. J. Biochem. 62:257–262.Google Scholar
  96. Van der Schans, G. P., Weyermans, J. P., and Bleichrodt, J. F., 1971, Infection of spheroplasts of Pseudomonas with DNA of bacteriophage PM2, Mol. Gen. Genet. 110:263–271.PubMedCrossRefGoogle Scholar
  97. Van Dieijen, G., Van Knippenberg, P. H., and Van Duin, J., 1976, The specific role of ribosomal protein S1 in the recognition of native phage RNA, Eur. J. Biochem. 64:511–518.PubMedCrossRefGoogle Scholar
  98. Van Etten, J. L., Vidaver, A. K., Koski, R. K., and Semancik, J. S., 1973, RNA Polymerase activity associated with bacteriophage ϕ6, J. Virol. 12:464–471.PubMedGoogle Scholar
  99. Van Etten, J. L., Vidaver, A. K., Koski, R. K., and Burnett, J. P., 1974, Base composition and hybridization studies of the three double-stranded RNA segments of bacteriophage ϕ6, J. Virol. 13:1254–1262.PubMedGoogle Scholar
  100. Van Etten, J., Lane, L., Gonzalez, C., Partridge, J., and Vidaver, A., 1976, Comparative properties of bacteriophage ϕ6 and ϕ6 nucleocapsid, J. Virol. 18:652–658.PubMedGoogle Scholar
  101. Vidaver, A. K., Koski, R. K., and Van Etten, J. L., 1973, Bacteriophage ϕ6: A lipid-containing virus of Pseudomonas phaseolicola, J. Virol. 11:799–805.PubMedGoogle Scholar
  102. Wehrli, W., and Staehelin, M., 1971, Actions of the rifamycins, Bacteriol. Rev. 35:290–309.PubMedGoogle Scholar
  103. Weiner, A. M., and Weber, K., 1971, Natural read-through at the UGA termination signal of Qβ coat protein cistron, Nature (London) New Biol. 234:206–209.Google Scholar
  104. Wirtz, K. W. A., 1974, Transfer of phospholipids between membranes, Biochim. Biophys. Acta 344:95–117.PubMedGoogle Scholar
  105. Yamamoto, K. R., and Alberts, B. M., 1970, Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification, Virology 40:734–744.PubMedCrossRefGoogle Scholar
  106. Yanofsky, C., and Ito, J., 1966, Nonsense codons and polarity in the tryptophan operon, J. Mol. Biol 21:313–334.PubMedCrossRefGoogle Scholar
  107. Yanofsky, C., Horn, V., Bonner, M., and Stasioski, S., 1971, Polarity and enzyme functions in mutants of the first three genes of the tryptophan operon of Escherichia coli, Genetics 69:409–433.PubMedGoogle Scholar
  108. Zipser, D., Zabell, S., Rothman, J., Grodzicker, T., and Wenk, H., 1970, Fine structure of the gradient of polarity in the z gene of the lac operon of Escherichia coli, J. Mol. Biol. 49:251–254.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1978

Authors and Affiliations

  • Leonard Mindich
    • 1
  1. 1.Department of MicrobiologyThe Public Health Research Institute of the City of New York, Inc.New YorkUSA

Personalised recommendations