Advertisement

Viroids

  • T. O. Diener
  • A. Hadidi

Abstract

Viroids have been recognized recently as the smallest agents of infectious disease. Viroids differ from viruses by the absence of a dormant phase (virions) and by genomes that are much smaller than those of known viruses (Diener, 1971b). The term “viroid” has been introduced to describe infectious nucleic acids which have properties similar to those of the causal agent of potato spindle tuber disease (Diener, 1971b). Presently known viroids consist solely of a low molecular weight RNA of about 75,000–130,000. Introduction of this RNA into susceptible hosts leads to autonomous replication of the RNA, and, in some hosts, to disease.

Keywords

Potato Spindle Tuber Viroid Pancreatic Ribonuclease Infected Tomato Plant Molecular Weight Estimate Potato Spindle Tuber Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, D. H., 1970, The nature of the scrapie agent: A review of recent progress, Pathol. Biol. 18:559.PubMedGoogle Scholar
  2. Altenburg, E., 1946, The viroid theory in relation to plasmagenes, viruses, cancer, and plastids, Am. Nat. 80:559.PubMedGoogle Scholar
  3. Bailey, L. H., 1969, Manual of Cultivated Plants, 11th ed., 1116 p., Macmillan New York.Google Scholar
  4. Boedtker, H., 1971, Conformation independent molecular weight determinations of RNA by gel electrophoresis, Biochim. Biophys. Acta 240:448.Google Scholar
  5. Brakke, M. K., 1970, Systemic infections for the assay of plant viruses, Annu. Rev. Phytopathol. 8:61.Google Scholar
  6. Brierley, P., 1953, Some experimental hosts of the chrysanthemum stunt virus, Plant Dis. Rep. 37:343.Google Scholar
  7. Brownlee, G. G., and Sanger, F., 1969, Chromatography of 32P-labeled oligonucleotides on thin layers of DEAE-cellulose, Eur. J. Biochem. 11:395.PubMedGoogle Scholar
  8. Childs, J. F. L., Norma, G. G., and Eichorn, J. L., 1958, A color test for exocortis infection in Poncirus trifoliata, Phytopathology 48:426.Google Scholar
  9. Davies, J. W., Kaesberg, P., and Diener, T. O., 1974, Potato spindle tuber viroid. XII. An investigation of viroid RNA as a messenger for protein synthesis, Virology 61:281.PubMedGoogle Scholar
  10. Dickson, E., 1976, Studies of plant viroid RNA and other RNA species, Ph.D. thesis, Rockefeller University, New York.Google Scholar
  11. Dickson, E., Prensky, W., and Robertson, H. D., 1975, Comparative studies of two viroids: Analysis of potato spindle tuber and citrus exocortis viroids by RNA fingerprinting and Polyacrylamide gel electrophoresis, Virology 68:309.PubMedGoogle Scholar
  12. Diener, T. O., 1971a, Potato spindle tuber virus: A plant virus with properties of a free nucleic acid. III. Subcellular location of PSTV-RNA and the question of whether virions exist in extracts or in situ, Virology 43:75.PubMedGoogle Scholar
  13. Diener, T. O., 1971b, Potato spindle tuber “virus.” IV. A replicating, low molecular weight RNA, Virology 45:411.PubMedGoogle Scholar
  14. Diener, T. O., 1971c, A plant virus with properties of a free ribonucleic acid: Potato spindle tuber virus, in: Comparative Virology (K. Maramorosch and E. Kurstak, eds.), pp. 433–478, Academic Press, New York.Google Scholar
  15. Diener, T. O., 1972a, Potato spindle tuber viroid. VIII. Correlation of infectivity with a UV-absorbing component and thermal denaturation properties of the RNA, Virology 50:606.PubMedGoogle Scholar
  16. Diener, T. O., 1972b, Viroids, in: Advances in Virus Research, Vol. 17 (K. M. Smith, M. A. Lauffer, and F. B. Bang, eds.), pp. 295–313, Academic Press, New York.Google Scholar
  17. Diener, T. O., 1972c, Is the scrapie agent a viroid? Nature (London) New Biol. 235:218.Google Scholar
  18. Diener, T. O., 1973a, Potato spindle tuber viroid. A novel type of pathogen, in: Perspectives in Virology, Vol. 8 (M. Pollard, ed.), pp. 7–30, Academic Press, New York.Google Scholar
  19. Diener, T. O., 1973b, Virus terminology and the viroid: A rebuttal, Phytopathology 63:1328.Google Scholar
  20. Diener, T. O., 1973c, A method for the purification and reconcentration of nucleic acids eluted or extracted from Polyacrylamide gels, Anal. Biochem. 55:317.PubMedGoogle Scholar
  21. Diener, T. O., and Lawson, R. H., 1973, Chrysanthemum stunt: A viroid disease, Virology 51:94.PubMedGoogle Scholar
  22. Diener, T. O., and Raymer, W. B., 1967, Potato spindle tuber virus: A plant virus with properties of a free nucleic acid, Science 158:378.PubMedGoogle Scholar
  23. Diener, T. O., and Raymer, W. B., 1969, Potato spindle tuber virus: A plant virus with properties of a free nucleic acid. II. Characterization and partial purification, Virology 37:351.PubMedGoogle Scholar
  24. Diener, T. O., and Raymer, W. B., 1971, Potato spindle tuber “virus,” in: C.M.I./ A.A.B. Descriptions of Plant Viruses, No. 66, Commonwealth Mycol. Inst. Assoc. Appl. Biol., 4 pp.Google Scholar
  25. Diener, T. O., and Smith, D. R., 1971, Potato spindle tuber viroid. VI. Monodisperse distribution after electrophoresis in 20% Polyacrylamide gels, Virology 46:498.PubMedGoogle Scholar
  26. Diener, T. O., and Smith, D. R., 1973, Potato spindle tuber viroid. IX. Molecular weight determination by gel electrophoresis of formylated RNA, Virology 53:350.Google Scholar
  27. Diener, T. O., and Smith, D. R., 1975, Potato spindle tuber viroid. XIII. Inhibition of replication by actinomycin D, Virology 63:421.PubMedGoogle Scholar
  28. Diener, T. O., and Weaver, M. L., 1959, Reversible and irreversible inhibition of necrotic ringspot virus in cucumber by pancreatic ribonuclease, Virology 7:419.PubMedGoogle Scholar
  29. Diener, T. O., Smith, D. R., and O’Brien, M. J., 1972, Potato spindle tuber viroid. VII. Susceptibility of several solanaceous plant species to infection with low-molecular-weight RNA, Virology 48:844.PubMedGoogle Scholar
  30. Diener, T. O., Schneider, I. R., and Smith, D. R., 1974, Potato spindle tuber viroid. XI. A comparison of the ultraviolet light sensitivities of PSTV, tobacco ringspot virus, and its satellite, Virology 57:577.PubMedGoogle Scholar
  31. Diener, T. O., Hadidi, A., and Owens, R. A., 1977, Methods for studying viroids, in: Methods in Virology, Vol. 6 (K. Maramorosch and H. Koprowski, eds), Academic Press, New York.Google Scholar
  32. Dorland’s Illustrated Medical Dictionary, 1944, 20th ed., 1725 pp., Saunders, Philadelphia.Google Scholar
  33. Engelhardt, D. L., 1972, Assay for secondary structure in ribonucleic acid, J. Virol. 9:903.PubMedGoogle Scholar
  34. Fernow, K. H., 1967, Tomato as a test plant for detecting mild strains of potato spindle tuber virus, Phytopathology 57:1347.Google Scholar
  35. Francki, R. I. B., 1968, Inactivation of cucumber mosaic virus (Q strain) nucleoprotein by pancreatic ribonuclease, Virology 34:694.PubMedGoogle Scholar
  36. Franklin, R. M., 1966, Purification and properties of the replicative intermediate of the RNA bacteriophage R17, Proc. Natl. Acad. Sci. USA 55:1504.PubMedGoogle Scholar
  37. Garnsey, S. M., and Whidden, R., 1970, Transmission of exocortis virus to various citrus plants by knife-cut inoculation, Phytopathology 60:1292.Google Scholar
  38. Garnsey, S. M., and Whidden, R., 1974, Effects of RNase and UV light on transmission of citrus exocortis virus (CEV) by contaminated knife blades, Proc. Am. Phytopathol. Soc. 1:50.Google Scholar
  39. Gerard, G. F., 1975, Poly(2′-O-methylcytidylate)-oligodeoxyguanylate, a template-primer specific for reverse transcriptase, is not utilized by HeLa cell 7 DNA polymerases, Biochem. Biophys. Res. Commun. 63:706.PubMedGoogle Scholar
  40. Gierer, A., 1973, Molecular models and combinatorial principles in cell differentiation and morphogenesis, Cold Spring Harbor Symp. Quant. Biol. 38:951.Google Scholar
  41. Gillespie, D., Gillespie, S., and Wong-Staal, F., 1975, RNA-DNA hybridization applied to cancer research: Special reference to RNA tumor viruses, in: Methods in Cancer Research, Vol. 11 (H. Bush, éd.), pp. 205–245, Academic Press, New York.Google Scholar
  42. Hadidi, A., 1976, 32P-labelling of potato spindle tuber viroid in infected tomato plants, in: Beltsville Symposium on Virology in Agriculture, p. 24, U.S.D.A., Beltsville, Md.Google Scholar
  43. Hadidi, A., and Fraenkel-Conrat, H., 1973, Characterization and specificity of soluble RNA polymerase of brome mosaic virus, Virology 52:363.PubMedGoogle Scholar
  44. Hadidi, A., and Fraenkel-Conrat, H., 1974, Host-range and structural data on common plant viruses, in: Handbook of Genetics (R. C. King, ed.), pp. 381–413, Plenum Press, New York.Google Scholar
  45. Hadidi, A., Jones, D. M., Gillespie, D. H., Wong-Staal, F., and Diener, T. O., 1976a, Hybridization of potato spindle tuber viroid to cellular DNA of normal plants, Proc. Natl. Acad. Sci. USA 73:2453.PubMedGoogle Scholar
  46. Hadidi, A., Modak, M. J., and Diener, T. O., 1976b, Preparation and characterization of DNA complementary to potato spindle tuber viroid, in: Beltsville Symposium on Virology in Agriculture, p. 30, U.S.D.A., Beltsville, Md.Google Scholar
  47. Hall, T. C., and Davies, J. W., 1975, Viroid RNA lacks messenger and transfer functions, Third International Congress for Virology, p. 81, Madrid, Spain.Google Scholar
  48. Hall, T. C., Wepprich, R. K., Davies, J. W., Weathers, L. G., and Semancik, J. S., 1974, Functional distinctions between the ribonucleic acids from citrus exocortis viroid and plant viruses. 1. Cell-free translation and aminoacylation reactions, Virology 61:486.PubMedGoogle Scholar
  49. Hariharasubramanian, V., Hadidi, A., Singer, B., and Fraenkel-Conrat, H., 1973, Possible identification of a protein in brome mosaic virus infected barley as a component of viral RNA polymerase, Virology 54:190.PubMedGoogle Scholar
  50. Hollings, M., and Stone, O. M., 1973, Some properties of chrysanthemum stunt, a virus with the characteristics of an uncoated ribonucleic acid, Ann. Appl. Biol. 74:333.Google Scholar
  51. Horst, R. K., 1975, Detection of a latent infectious agent that protects against infection by chrysanthemum chlorotic mottle viroid, Phytopathology 65:1000.Google Scholar
  52. Hunter, D. E., Darling, H. M., and Beale, W. L., 1969, Seed transmission of potato spindle tuber virus, Am. Potato J. 46:247.Google Scholar
  53. Inman, R. B., and Schnös, M., 1970, Partial denaturation of thymine- and 5-bromouracil-containing A DNA in alkali, J. Mol. Biol. 49:93.PubMedGoogle Scholar
  54. Kaper, J. M., and Waterworth, H. E., 1973, Comparisons of molecular weights of single-stranded viral RNAs by two empirical methods, Virology 51:183.PubMedGoogle Scholar
  55. Kelsey, H. P., and Dayton, W. A., eds, 1942, Standardized Plant Names, 2nd ed., 675 pp., J. Horace McFarland, Harrisburg, Pa.Google Scholar
  56. Kleinschmidt, A. K., and Zahn, R. K., 1959, Ueber Desoxyribonucleinsäure-Molekeln in Protein-Mischfilmen, Z. Naturforsch. 14b:770.Google Scholar
  57. Kuehl, L., 1964, Isolation of plant nuclei, Z. Naturforsch. 19b:525.Google Scholar
  58. Lang, D., 1970, Molecular weights of coliphages and coliphage DNA. III. Contour length and molecular weight of DNA from bacteriophages T4, T5, and T7 and from bovine papilloma virus, J. Mol. Biol. 54:557.PubMedGoogle Scholar
  59. Lawson, R. H., 1968, Some properties of chrysanthemum stunt virus, Phytopathology 58:885.Google Scholar
  60. Lewandowski, L. J., Kimball, P. C., and Knight, C. A., 1971, Separation of the infectious ribonucleic acid of potato spindle tuber virus from double-stranded ribonucleic acid of plant tissue extracts, J. Virol. 8:809.PubMedGoogle Scholar
  61. Lister, R. M., and Hadidi, A. F., 1971, Some properties of apple chlorotic leaf-spot virus and their relation to purification problems, Virology 45:240.PubMedGoogle Scholar
  62. Loening, U. E., 1967, The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis, Biochem. J. 102:251.PubMedGoogle Scholar
  63. Marsh, R. F., Semancik, J. S., Medappa, K. C., Hanson, R. P., and Rueckert, R. R., 1974, Scrapie and transmissible mink encephalopathy: Search for infectious nucleic acid, J. Virol. 13:993.PubMedGoogle Scholar
  64. McClements, W. L., and Kaesberg, P., 1977, Size and secondary structure of potato spindle tuber viroid, Virology 76: 477. PubMedGoogle Scholar
  65. Miura, K., Kimura, I., and Suzuki, N., 1966, Double-stranded ribonucleic acid from rice dwarf virus, Virology 28:571.PubMedGoogle Scholar
  66. Modak, M. J., Marcus, S. L., and Cavalierie, L. F., 1975, A new sensitive method for detecting polyadenylate in viral and other ribonucleic acids using Escherichia coli deoxyribonucleic acid polymerase 1,7. Biol. Chem. 249:7373.Google Scholar
  67. Morris, T. J., and Semancik, J. S., 1974, Nucleotide composition of RNA by Polyacrylamide gel electrophoresis, Anal. Biochem. 61:48.PubMedGoogle Scholar
  68. Niblett, C. L., Hedgcoth, C., and Diener, T. O., 1976, Base composition of potato spindle tuber viroid, in: Belts ville Symposium on Virology in Agriculture, p. 27, U.S.D.A., Beltsville, Md.Google Scholar
  69. O’Brien, M. J., and Raymer, W. B., 1964, Symptomless hosts of the potato spindle tuber virus. Phytopathology 54:1045.Google Scholar
  70. Olson, E. O., and Shull, A. V., 1956, Exocortis and xyloporosis-bud transmission virus disease of rangpur and other mandarin-lime rootstocks, Plant Dis. Rep. 40:939.Google Scholar
  71. Owens, R. A., 1976, Potato spindle tuber viroid as a template for RNA synthesis by replicase, in: Beltsville Symposium on Virology in Agriculture, p. 31, U.S.D.A., Beltsville, Md.Google Scholar
  72. Palmenberg, A., and Kaesberg, P., 1974, Synthesis of complementary strands of heterologous RNAs with replicase, Proc. Natl. Acad. Sci. USA 71:1371.PubMedGoogle Scholar
  73. Randerrath, E., Yu, C.-T., and Randerrath, K., 1972, Base analysis of ribopolynu-cleotides by chemical tritium labelling: A methodological study with model nucleosides and purified tRNA species, Anal. Biochem. 48:172.Google Scholar
  74. Randies, J. W., 1975, Association of two ribonucleic acid species with cadang-cadang disease of coconut palm, Phytopathology 65:163.Google Scholar
  75. Randies, J. W., Rillo, E. P., and Diener, T. O., 1976, The viroid like structure and cellular location of anomalous RNA associated with cadang-cadang disease. Virology 74:128.Google Scholar
  76. Raymer, W. B., and Diener, T. O., 1969, Potato spindle tuber virus: A plant virus with properties of a free nucleic acid. I. Assay, extraction, and concentration, Virology 37:343.PubMedGoogle Scholar
  77. Raymer, W. B., and O’Brien, M. J., 1962, Transmission of potato spindle tuber virus to tomato, Am. Potato J. 39:401.Google Scholar
  78. Robertson, H. D., and Dunn, J. J., 1975, Ribonucleic acid processing activity of Escherichia coli ribonuclease III, J. Biol. Chem. 250:3050.PubMedGoogle Scholar
  79. Robertson, H. D., and Hunter, T., 1975, Sensitive methods for the detection and characterization of double helical ribonucleic acid, J. Biol. Chem. 250:418.PubMedGoogle Scholar
  80. Robertson, H. D., and Jeppesen, P. G. N., 1972, Extent of variation in three related bacteriophage RNA molecules, J. Mol Biol. 68:417.PubMedGoogle Scholar
  81. Robertson, H. D., Webster, R. E., and Zinder, N. D., 1967, A nuclease specific for double-stranded RNA, Virology 32:718.PubMedGoogle Scholar
  82. Romaine, C. P., and Horst, R. K., 1975, Suggested viroid etiology for chrysanthemum chlorotic mottle disease, Virology 64:86.PubMedGoogle Scholar
  83. Sänger, H. L., 1972, An infectious and replicating RNA of low molecular weight. The agent of exocortis disease of citrus, Adv. Biosci. 8:103.Google Scholar
  84. Sänger, H. L., Klotz, G., Riesner, D., Gross, H. J., and Kleinschmidt, A. K., 1976, Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures, Proc. Natl. Acad. Sci. USA 73:3852.PubMedGoogle Scholar
  85. Schneider, I. R., 1971, Characteristics of a satellite-like virus of tobacco ringspot virus, Virology 45:108.PubMedGoogle Scholar
  86. Schwartz, E. F., and Stollar, B. D., 1969, Antibodies to polyadenylate-polyuridylate copolymers as reagents for double stranded RNA and DNA:RNA hybrid complexes, Biochem. Biophys. Res. Commun. 35:115.PubMedGoogle Scholar
  87. Semancik, J. S., 1974, Detection of polyadenylic acid sequences in plant pathogenic RNA, Virology 62:288.PubMedGoogle Scholar
  88. Semancik, J. S., and Geelen, J. L. M. C., 1975, Detection of DNA complementary to pathogenic viroid RNA in exocortis disease, Nature (London) 256:753.Google Scholar
  89. Semancik, J. S., and Vanderwoude, W. J., 1976, Exocortis viroid: Cytopathic effects at the plasma membrane in association with pathogenic RNA, Virology 69:719.PubMedGoogle Scholar
  90. Semancik, J. S., and Weathers, L. G., 1968, Exocortis virus of citrus: Association of infectivity with nucleic acid preparations, Virology 36:326.PubMedGoogle Scholar
  91. Semancik, J. S., and Weathers, L. G., 1972a, Pathogenic 10 S RNA from exocortis disease recovered from tomato bunchy-top plants similar to potato spindle tuber virus infection, Virology 49:622.PubMedGoogle Scholar
  92. Semancik, J. S., and Weathers, L. G., 1972b, Exocortis disease: Evidence for a new species of “infectious” low molecular weight RNA in plants, Nature (London) New Biol. 237:242.Google Scholar
  93. Semancik, J. S., and Weathers, L. G., 1972c, Exocortis virus: An infectious free-nucleic acid plant virus with unusual properties, Virology 47:456.PubMedGoogle Scholar
  94. Semancik, J. S., Magnuson, D. S., and Weathers, L. G., 1973a, Potato spindle tuber disease produced by pathogenic RNA from citrus exocortis disease: Evidence for the identity of the causal agents, Virology 52:292.PubMedGoogle Scholar
  95. Semancik, J. S., Morris, T. J., and Weathers, L. G., 1973b, Structure and conformation of low molecular weight pathogenic RNA from exocortis disease, Virology 53:448.PubMedGoogle Scholar
  96. Semancik, J. S., Morris, T. J., Weathers, L. G., Rodorf, B. F., and Kearns, D. R., 1975, Physical properties of a minimal infectious RNA (viroid) associated with the exocortis disease, Virology 63:160.PubMedGoogle Scholar
  97. Semancik, J. S., Tsuruda, D., Zaner, L., Geelen, J. L. M. C., and Weathers, L. G., 1976, Exocortis disease. Subcellular distribution of pathogenic (viroid) RNA, Virology 69:669.PubMedGoogle Scholar
  98. Singh, R. P., 1970, Seed transmission of potato spindle tuber virus in tomato and potato, Am. Potato J. 47:225.Google Scholar
  99. Singh, R. P., 1971, A local lesion host for potato spindle tuber virus, Phytopathology 61:1034.Google Scholar
  100. Singh, R. P., 1973, Experimental host range of the potato spindle tuber “virus,” Am. Potato J. 50:111.Google Scholar
  101. Singh, R. P., and Bagnall, R. H., 1968, Infectious nucleic acid from host tissues infected with the potato spindle tuber virus, Phytopathology 58:696.Google Scholar
  102. Singh, R. P., and Clark, M. C., 1971, Infectious low-molecular-weight ribonucleic acid from tomato, Biochem. Biophys. Res. Commun. 44:1077.PubMedGoogle Scholar
  103. Singh, R. P., and Clark, M. C., 1973, Similarity of host response to both potato spindle tuber and citrus exocortis viruses, FAO Plant Prot. Bull. 21:121.Google Scholar
  104. Singh, R. P., and O’Brien, M. J., 1970, Additional indicator plants for potato spindle tuber virus, Am. Potato J. 47:367.Google Scholar
  105. Singh, R. P., Finnie, R. E., and Bagnall, R. H., 1970, Relative prevalence of mild and severe strains of potato spindle tuber virus in Eastern Canada, Am. Potato J. 47:289.Google Scholar
  106. Singh, R. P., Finnie, R. E., and Bagnall, R. H., 1971, Losses due to the potato spindle tuber virus, Am. Potato J. 48:262.Google Scholar
  107. Singh, R. P., Michniewicz, J. J., and Narang, S. A., 1974, Multiple forms of potato spindle-tuber metavirus ribonucleic acid, Can. J. Biochem. 52:809.PubMedGoogle Scholar
  108. Sogo, J. M., Koller, T., and Diener, T. O., 1973, Potato spindle tuber viroid. X. Visualization and size determination by electron microscopy, Virology 55:70.PubMedGoogle Scholar
  109. Spadari, S., and Weissbach, A., 1974, HeLa cell R-deoxyribonucleic acid polymerases. Separation and characterization of two enzymatic activities, J. Biol. Chem. 249:5809.PubMedGoogle Scholar
  110. Stedman’s Medical Dictionary, 1942, 15th ed., Rev., 1257 pp., William Wood and Co., Division of Williams and Wilkins, Baltimore.Google Scholar
  111. Stollar, B. D., and Diener, T. O., 1971, Potato spindle tuber viroid. V. Failure of immunological tests to disclose double-stranded RNA or RNA-DNA hybrids, Virology 46:168.PubMedGoogle Scholar
  112. Takahashi, T., and Diener, T. O., 1975, Potato spindle tuber viroid. XIV. Replication in nuclei isolated from infected leaves, Virology 64:106.PubMedGoogle Scholar
  113. Van Dorst, H. J. M., and Peters, D., 1974, Some biological observations on pale fruit, a viroid-incited disease of cucumber, Neth. J. Plant Pathol. 80:85.Google Scholar
  114. Waterworth, H. E., and Kaper, J. M., 1972, Purification and some properties of carnation mottle virus and its ribonucleic acid, Phytopathology 62:959.Google Scholar
  115. Weathers, L. G., Greer, Jr., F. C., and Harjung, M. K., 1967, Transmission of exocortis virus of citrus to herbaceous hosts, Plant. Dis. Rep. 51:868.Google Scholar
  116. Zaitlin, M., and Hariharasubramanian, V., 1972, A gel electrophoretic analysis of proteins from plants infected with tobacco mosaic and potato spindle tuber viruses, Virology 47:296.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • T. O. Diener
    • 1
  • A. Hadidi
    • 1
  1. 1.Plant Virology Laboratory, Plant Protection Institute, Agricultural Research ServiceU.S. Department of AgricultureBeltsvilleUSA

Personalised recommendations