Advertisement

Genetics of Herpesviruses

  • John H. Subak-Sharpe
  • Morag C. Timbury
Part of the Comprehensive Virology book series (CV, volume 9)

Abstract

Herpes simplex virus (HSV) is the prototype of a large group of animal viruses with common morphological and biochemical features. An important preliminary for genetic consideration of herpes simplex virus is familiarity with the structure and composition of the virion and its genetic information content, the virus growth cycle, and the capability of the virus to induce latency in vivo and to transform cells in culture. The biochemical and structural complexity of the particle of herpes simplex virus (HSV), which contains 33–36 separable polypeptides (Heine et al., 1974; Marsden et al., 1976), has recently been reviewed, as has the virus growth cycle (Kaplan, 1973; Roizman and Furlong, 1975).

Keywords

Thymidine Kinase Complementation Group Thymidine Kinase Activity Phosphonoacetic Acid Herpes Simplex Virus Genome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aron, G. M., Schaffer, P. A., Courtney, R. J., Benyesh-Melnick, M., and Kit, S., 1973, Thymidine kinase activity of herpes simplex virus temperature-sensitive mutants, Intervirology 1: 96.PubMedGoogle Scholar
  2. Aron, G. M., Purifoy, D. J. M., and Schaffer, P. A., 1975, DNA synthesis and DNA polymerase activity of herpes simplex virus type 1 temperature-sensitive mutants, J. Virol. 16: 498.PubMedGoogle Scholar
  3. Aurelian, L., and Roizman, B., 1964, The host range of herpes simplex virus: Interferon, viral DNA and antigen synthesis in abortive infection of dog kidney cells, Virology 22: 452.PubMedGoogle Scholar
  4. Becker, Y., Dym, H., and Sarov, I., 1968, Herpes simplex virus DNA, Virology 36: 184.PubMedGoogle Scholar
  5. Benyesh-Melnick, M., Schaffer, P. A., Courtney, R. J., Esparza, J., and Kimura, S., 1974, Viral gene functions expressed and detected by temperature-sensitive mutants of herpes simplex virus, Cold Spring Harbor Symp. Quant. Biol. 39: 731.Google Scholar
  6. Benzer, S., 1961, On the topography of the genetic fine structure, Proc. Natl. Acad. Sci. USA 47: 403.PubMedGoogle Scholar
  7. Bone, D. R., and Courtney, R. J., 1974, A temperature-sensitive mutant of herpes simplex virus type 1 defective in the synthesis of the major capsid polypeptide, J. Gen. Virol. 24: 17–27.PubMedGoogle Scholar
  8. Brown, S. M., and Ritchie, D. A., 1975a, Genetic studies with herpes simplex virus type 1. Analysis of mixed-plaque forming virus and its bearing on genetic recombination, Virology 64: 32.PubMedGoogle Scholar
  9. Brown, S. M., and Ritchie, D. A., 1975b, Genetic studies with herpes simplex virus type 1: Quantitative analysis of the products from two-factor crosses, Virology 64: 281.PubMedGoogle Scholar
  10. Brown, S. M., Ritchie, D. A., and Subak-Sharpe, J. H., 1973, Genetic studies with herpes simplex virus type 1: The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map, J. Gen. Virol. 18: 329.PubMedGoogle Scholar
  11. Campbell, A., 1961, Sensitive mutants of bacteriophage X, Virology 14: 22.PubMedGoogle Scholar
  12. Chadka, K. C., and Munyon, W., 1975, Presence of herpes simplex virus-related antigens in transformed L cells, J. Virol. 15: 1475.Google Scholar
  13. Chu, C.-T., and Schaffer, P. A., 1975, Qualitative complementation test for temperature sensitive mutants of herpes simplex virus, J. Virol. 16: 1131.PubMedGoogle Scholar
  14. Clements, J. B., Cortini, R., and Wilkie, N. M., 1976, Analysis of herpes virus DNA substructure by means of restriction endonucleases, J. Gen. Virol. 30: 243.PubMedGoogle Scholar
  15. Courtney, R. J., and Benyesh-Melnick, M., 1974, Isolation and characterisation of a large molecular weight polypeptide of herpes simplex virus type 1, Virology 62: 539.PubMedGoogle Scholar
  16. Crick, F. H. C., and Orgel, L. E., 1964, The theory of interallelic complementation, J. Mol. Biol. 8: 161.PubMedGoogle Scholar
  17. Crombie, I. K., 1975, Genetic and biochemical studies with herpes simplex virus type 1, Ph.D. thesis.Google Scholar
  18. Davidson, R. L., Adelstein, S. J., and Oxman, M. N., 1973, Herpes simplex virus as a source of thymidine kinase for thymidine kinase-deficient mouse cells: Suppression and reactivation of the viral enzyme, Proc. Natl. Acad. Sci. USA 70: 1912.PubMedGoogle Scholar
  19. Davis, D. B., Munyon, W., Buchsbaum, R., and Chawda, R., 1974, Virus type-specific thymidine kinase in cells biochemically transformed by herpes simplex virus types 1 and 2, J. Virol. 13: 140.PubMedGoogle Scholar
  20. Delius, H., and Clements, J. B., 1976, A partial denaturation map of herpes simplex virus type 1 DNA: Evidence for inversions of the two unique DNA regions, J. Gen. Virol. 33: 125.PubMedGoogle Scholar
  21. Dubbs, D. R., and Kit, S., 1964, Mutant strains of herpes simplex deficient in thymidine kinase inducing activity, Virology 22: 493.PubMedGoogle Scholar
  22. Duff, R., and Rapp, F., 197la, Oncogenic transformation of hamster cells after exposure to herpes simplex virus type 2, Nature (London) New Biol. 233: 48.Google Scholar
  23. Duff, R., and Rapp, F., 1971b, Properties of hamster embryo fibroblasts transformed in vitro after exposure to ultra-violet irradiated herpes simplex virus type 2, J. Virol. 8: 469.PubMedGoogle Scholar
  24. Ejercito, P. M., Kieff, E. D., and Roizman, B., 1968, Characterization of herpes simplex virus strains differing in their effects on social behaviour of infected cells, J. Gen. Virol. 2: 357.PubMedGoogle Scholar
  25. Epstein, R. H., Bolle, A., Steinberg, C. M., Kellenberger, E., Boy de la Tour, E., Chevalley, R., Edgar, R. S., Susman, M., Denhardt, G. H., and Lielausis, A., 1963, Physiological studies of conditional lethal mutants of bacteriophage T4D, Cold Spring Harbor Symp. Quant. Biol. 28: 375.Google Scholar
  26. Esparza, J., Purifoy, D. J. M., Schaffer, P. A., and Benyesh-Melnick, M., 1974, Isolation, complementation and preliminary phenotypic characterisation of temperature-sensitive mutants of herpes simplex virus type 2, Virology 57: 554.PubMedGoogle Scholar
  27. Fenner, F., 1969, Conditional lethal mutants of animal viruses, Curr. Top. Microbiol. Immunol. 48: 1.PubMedGoogle Scholar
  28. Freese, E., 1959, The specific mutagenic effect of base analogues on phage T4, J. Mol. Biol. 1: 87.Google Scholar
  29. Frenkel, N., and Roizman, B., 1972, Separation of the herpesvirus deoxyribonucleic acid duplex into unique fragments and intact strand on sedimentation in alkaline gradients, J. Virol. 10: 565.PubMedGoogle Scholar
  30. Gallacher, W. R., Levitan, D. B., and Blough, H. A., 1973, Effect of 2-deoxy-D-glucose on cell fusion induced by Newcastle disease and herpes simplex viruses, Virology 55: 193.Google Scholar
  31. Ginsberg, H. S., Ensinger, M. J., Kauffman, R. S., Mayer, A. J., and Lundholm, U., 1974, Cell transformation: A study of regulation with types 5 and 12 adenovirus temperature-sensitive mutants, Cold Spring Harbor Symp. Quant. Biol. 39: 419.Google Scholar
  32. Goodheart, C. R., Plummer, G., and Waner, J. L., 1968, Density difference of DNA of human herpes simplex viruses types 1 and 2, Virology 35: 473.PubMedGoogle Scholar
  33. Graham, F. L., Veldhuisen, G., and Wilkie, N. M., 1973, Infectious herpesvirus DNA, Nature (London) New Biol. 245: 265.Google Scholar
  34. Halliburton, I. W., and Timbury, M. C., 1973, Characterization of temperature sensitive mutants of herpes simplex virus type 2: Growth and DNA synthesis, Virology 54: 60.PubMedGoogle Scholar
  35. Halliburton, I. W., and Timbury, M. C., 1976, Temperature-sensitive mutants of herpes simplex virus type 2: Description of three new complementation groups and studies on the inhibition of host cell DNA synthesis, J. Gen. Virol. 30: 207.PubMedGoogle Scholar
  36. Halliburton, I. W., Hill, E. A., and Russell, G. J., 1975, Identification of strains of herpes simplex virus by comparison of the density of their DNA using the preparative ultracentrifuge, Arch. Virol. 48: 157.PubMedGoogle Scholar
  37. Hay, J., and Subak-Sharpe, J. H., 1976, Mutants of herpes simplex virus types 1 and 2 that are resistant to phosphonoacetic acid induce altered DNA polymerase activities in infected cells, J. Gen. Virol. 31: 145.PubMedGoogle Scholar
  38. Hay, J., Perera, P. A. J., Morrison, J. M., Gentry, G. A., and Subak-Sharpe, J. H., 1971, Herpes virus-specified proteins, in: Strategy of the Viral Genome: A CIBA Foundation Symposium ( G. E. W. Wolstenholme and M. O’Connor, eds.), p. 355, Churchill Livingstone, Edinburgh.Google Scholar
  39. Hay, J., Moss, H., Jamieson, A. T., and Timbury, M. C., 1976, Herpesvirus proteins: DNA polymerase and pyrimidine deoxynucleoside kinase activities in temperature-sensitive mutants of herpes simplex virus type 2, J. Gen. Virol. 31: 65.PubMedGoogle Scholar
  40. Hayes, W., 1968, The genetics of bacteria and their viruses, 2nd ed., p. 302, Blackwell, Oxford.Google Scholar
  41. Hayward, G. S., Frenkel, N., and Roizman, B., 1975, Anatomy of herpes simplex virus DNA; strain differences and heterogeneity in the locations of restriction endonuclease cleavage sites, Proc. Natl. Acad. Sci. USA 72: 1768.PubMedGoogle Scholar
  42. Heine, J. W., Honess, R. W., Cassai, E., and Roizman, B., 1974, Proteins specified by herpes simplex virus XII: The virion polypeptides of type 1 strains, J. Virol. 14: 640.PubMedGoogle Scholar
  43. Hershey, A. D., and Chase, M., 1951, Genetic recombination and heterozygosis in bacteriophage, Cold Spring Harbor Symp. Quant. Biol. 16: 471.PubMedGoogle Scholar
  44. Honess, R. W., and Roizman, B., 1973, Proteins specified by herpes simplex virus. XI. Identification and relative molar rates of synthesis of structural and non-structural herpes virus polypeptides in the infected cell, J. Virol. 12: 1347.PubMedGoogle Scholar
  45. Honess, R. W., and Roizman, B., 1974, Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins, J. Virol. 14: 8.PubMedGoogle Scholar
  46. Jamieson, A. T., 1973, In vivo and in vitro studies on herpes virus-induced deoxypyrimidine kinase activity, Ph.D. thesis.Google Scholar
  47. Jamieson, A. T., and Subak-Sharpe, J. H., 1974, Biochemical studies on the herpes simplex virus-specified deoxypyrimidine kinase activity, J. Gen. Virol. 24: 481.PubMedGoogle Scholar
  48. Jamieson, A. T., Gentry, G. A., and Subak-Sharpe, J. H., 1974, Induction of both thy- midine and deoxycytidine kinase activity by herpes viruses, J. Gen. Virol. 24: 465.PubMedGoogle Scholar
  49. Jamieson, A. T., Macnab, J. C. M., Perbal, B., and Clements J. B., 1976, Virus-specified enzyme activity and RNA species in herpes simplex virus type 1 transformed mouse cells, J. Gen. Virol. 32: 493.PubMedGoogle Scholar
  50. Kaplan, A. S., 1973, The Herpesviruses, Academic Press, New York.Google Scholar
  51. Keir, H. M., Subak-Sharpe, J. H., Shedden, W. I. H., Watson, D. H., and Wildy, P., 1966, Immunological evidence for a specific DNA polymerase produced after infection by herpes simplex virus, Virology 30: 154.PubMedGoogle Scholar
  52. Keller, J. M., Spear, P. G., and Roizman, B., 1970, Proteins specified by herpes simplex virus. III. Viruses differing in their effects on the social behaviour of infected cells specify different membrane glycoproteins, Proc. Natl. Acad. Sci. USA 65: 865.PubMedGoogle Scholar
  53. Kieff, E. D., Bachenheimer, S. L., and Roizman, B., 1971, Size, composition and structure of the deoxyribonucleic acid of subtypes 1 and 2 herpes simplex virus, J. Virol. 8: 125.PubMedGoogle Scholar
  54. Kieff, E. D., Hoyer, B., Bachenheimer, S. L., and Roizman, B., 1972, Genetic relatedness of type 1 and type 2 herpes simplex viruses, J. Virol. 9: 738–745.PubMedGoogle Scholar
  55. Kimura, S., Esparza, J., Benyesh-Melnick, M., and Schaffer, P. A., 1974, Enhanced replication of temperature-sensitive mutants of herpes simplex virus type 2 (HSV-2) at the non-permissive temperature in cells transformed by HSV-2, Intervirology 3: 162.PubMedGoogle Scholar
  56. Kimura, S., Flannery, V. L., Levy, B., and Schaffer, P. A., 1975, Oncogenic transformation of primary hamster cells by herpes simplex virus type 2 (HSV-2) and an HSV-2 temperature-sensitive mutant, Int. J. Cancer 15: 786.PubMedGoogle Scholar
  57. Kit, S., and Dubbs, D. R., 1963, Nonfunctional thymidine kinase cistron in bromodeoxyuridine resistant strains of herpes simplex virus, Biophys. Biochem. Res. Commun. 13: 500.Google Scholar
  58. Kit, S., Dubbs, D. R., Piekarski, L. J., and Hsu, T. C., 1963, Deletion of thymidine kinase activity from L cells resistant to bromodeoxyuridine, Exp. Cell Res. 31: 297.PubMedGoogle Scholar
  59. Koment, R. W., and Rapp, F., 1975, Variation in susceptibility of different cell types to temperature-sensitive host range mutants of herpes simplex virus type 2, Virology 64: 164.PubMedGoogle Scholar
  60. Krieg, D. R., 1963, Specificity of chemical mutagenesis, Prog. Nucl. Acid Res. 2:125. Lando, D., and Ryhiner, M. L., 1969, Pouvoir infectieux du DNA d’Herpesvirus hominis en culture cellulaire, Comp. Rend. Acad. Sci. (Paris) 269: 527.Google Scholar
  61. Levinthal, C., 1959, Bacteriophage genetics, in: Animal Viruses, Vol. 2 ( F. M. Burnet and W. M. Stanley, eds.), p. 281, Academic Press, New York.Google Scholar
  62. Lofgren, K. W., Stevens, J. G., Marsden, H. S., and Subak-Sharpe, J. H., 1977, Temperature sensitive mutants of herpes simplex virus differ in the capacity to establish latent infections in mice, Virology 76: 440.PubMedGoogle Scholar
  63. Ludwig, H. O., Biswal, N., and Benyesh Melnick, M., 1972, Studies on the relatedness of herpesviruses through DNA-DNA hybridization, Virology 49: 95.PubMedGoogle Scholar
  64. Macnab, J. C. M., 1974, Transformation of rat embryo cells by temperature-sensitive mutants of herpes simplex virus, J. Gen. Virol. 24: 143.PubMedGoogle Scholar
  65. Macnab, J. C. M., 1975, Transformed cell lines produced by temperature sensitive mutants of herpes simplex types 1 and 2, in: Oncogenesis and Herpes viruses, p. 227, Proceedings of a Symposium held in Nuremberg, 1974, IARC, Lyon.Google Scholar
  66. Macnab, J. C. M., 1976, Tumour production of HSV-2 transformed lines in rats and the varying response to immunosuppression, submitted for publication.Google Scholar
  67. Macnab, J. C. M., and Timbury, M. C., 1976, Complementation of HSV-2 is mutants by a is mutant transformed cell line, Nature (London) 261: 233.Google Scholar
  68. Macnab, J. C. M., Visser, L., Jamieson, A. T., and Hay, J., 1977, Specific viral antigens in rat cells transformed by herpes simplex virus type 2 and in tumours induced in rats by inoculation of transformed cells, manuscript in preparation.Google Scholar
  69. Manservigi, R., 1974, Method for isolation and selection of temperature-sensitive mutants of herpes simplex virus, Appl. Microbiol. 27: 1034.PubMedGoogle Scholar
  70. Mao, J. C.-H., Robishaw, E. E., Schleicher, J. B., Shipkowtiz, N. L., Ructer, A., and Overby, L. R., 1973, Abstract 144, 13th Conference Antimicrobial Agents and Chemotherapy, Washington D.C.Google Scholar
  71. Mao, J. C.-H., Robishaw, E. E., and Overby, L. R., 1975, Inhibition of DNA polymerase from herpes simplex virus-infected Wi-38 cells by phosphonoacetic acid, J. Virol. 15: 1281.PubMedGoogle Scholar
  72. Marsden, H. S., Crombie, I. K., and Subak-Sharpe, J. H., 1976, Control of protein synthesis in herpesvirus-infected cells: Analysis of the polypeptides induced by wild-type and sixteen temperature-sensitive mutants of HSV strain 17, J. Gen. Virol. 31: 347.PubMedGoogle Scholar
  73. Mechie, M., 1974, A biological and biochemical characterisation of is mutants of herpes simplex virus type 1, Ph.D. thesis.Google Scholar
  74. Munyon, W., Kraiselburd, E., Davis, D., and Mann, J., 1971, Transfer of thymidine kinase to thymidine kinaseless L cells by infection with ultraviolet-irradiated herpes simplex virus, J. Virol. 7: 813.PubMedGoogle Scholar
  75. Munyon, W., Buchsbaum, R., Paoletti, E., Mann, J., Kraiselburd, E., and Davis, D., 1972, Electrophoresis of thymidine kinase activity synthesized by cells transformed by herpes simplex virus, Virology 49: 683.PubMedGoogle Scholar
  76. Pringle, C. R., Howard, D. K., and Hay, J., 1973, Temperature-sensitive mutants of pseudorabies virus with differential effects on viral and host DNA synthesis, Virology 55: 495.PubMedGoogle Scholar
  77. Purifoy, D. J. M., and Benyesh-Melnick, M., 1975, DNA polymerase induction by DNA-negative temperature-sensitive mutants of herpes simplex virus type 2, Virology 68: 374.PubMedGoogle Scholar
  78. Rapp, F., and Li, J.-L. H., 1974, Demonstration of the oncogenic potential of herpes simplex viruses and human cytomegalovirus, Cold Spring Harbor Symp. Quant. Biol. 39: 747.Google Scholar
  79. Roizman, B., 1962, Polykaryocytosis: Results from fusion: of mononucleated cells, Cold Spring Harbor Symp. Quant. Biol. 27: 327.PubMedGoogle Scholar
  80. Roizman, B., and Aurelian, L., 1965, Abortive infection of canine cells by herpes simplex virus. 1. Characterisation of viral progeny from cooperative infection with mutants differing in capacity to multiply in canine cells, J. Mol. Biol. 11: 528.PubMedGoogle Scholar
  81. Roizman, B., and Furlong, D., 1975, The replication of herpesviruses, in: Comprehensive Virology, Vol. 3 ( H. Fraenkel-Conrat and R. R. Wagner, eds.), p. 229, Plenum Press, New York.Google Scholar
  82. Roizman, B., Kozak, M., Honess, R. W., and Hayward, G., 1974, Regulation of herpesvirus macromolecular synthesis: Evidence for multilevel regulation of herpes simplex 1 RNA and protein synthesis, Cold Spring Harbor Symp. Quant. Biol. 39: 687.Google Scholar
  83. Roizman, B., Hayward, G., Jacob, R., Wadsworth, S., Frenkel, N., Honess, R. W., and Kozak, M., 1975, Human herpesviruses I: A model for molecular organisation and regulation of herpesviruses—A review, in: Oncogenesis and Herpes viruses II, p. 3, Proceedings of a Symposium, Nuremberg, 1974, IARC, Lyon.Google Scholar
  84. Savage, T., Roizman, B., and Heine, J. W., 1972, Immunological specificity of the glycoproteins of herpes simplex virus sub-types 1 and 2, J. Gen. Virol. 17: 31.PubMedGoogle Scholar
  85. Schaffer, P. A., 1975, Genetics of herpesviruses—A review, in: Oncogenesis and Herpesviruses II, p. 195, Proceedings of a Symposium, Nuremberg, 1974, IARC, Lyon.Google Scholar
  86. Schaffer, P. A., Vonka, V., Lewis, R., and Benyesh-Melnick, M., 1970, Temperature-sensitive mutants of herpes simplex virus, Virology 42: 1144.PubMedGoogle Scholar
  87. Schaffer, P. A., Courtney, R. J., McCombs, R. M., and Benyesh-Melnick, M., 1971, A temperature-sensitive mutant of herpes simplex virus defective in glycoprotein synthesis, Virology 46: 356.PubMedGoogle Scholar
  88. Schaffer, P. A., Aron, G. M., Biswal, N., and Benyesh-Melnick, M., 1973, Temperature-sensitive mutants of herpes simplex virus type 1: Isolation, complementation and partial characterization, Virology 52: 57.PubMedGoogle Scholar
  89. Schaffer, P. A., Tevethia, M. J., and Benyesh-Melnick, M., 1974a, Recombination between temperature-sensitive mutants of herpes simplex virus type 1, Virology 58: 219.PubMedGoogle Scholar
  90. Schaffer, P. A., Brunschwig, J. P., McCombs, R. M., and Benyesh-Melnick, M., 19746, Electron microscopic studies of temperature-sensitive mutants of herpes simplex virus type 1, Virology 62: 444.Google Scholar
  91. Sheldrick, P., and Berthelot, N., 1974, Inverted repetitions in the chromosome of herpes simplex virus, Cold Spring Harbor Symp. Quant. Biol. 39: 667.Google Scholar
  92. Sheldrick, P., Laithier, M., Lando, D., and Ryhiner, M. L., 1973, Infectious DNA from herpes simplex virus: Infectivity of double-stranded and single-stranded molecules, Proc. Natl. Acad. Sci. USA 70: 3621.PubMedGoogle Scholar
  93. Shipkowitz, N. L., and Bower, R., 1973, Phosphonoacetic acid: A new antiherpesvirus agent II: in vivo activity, Abstract 145, 13th Conference of Antimicrobial Agents and Chemotherapy, Washington, D.C.Google Scholar
  94. Sim, C., and Watson, D. H., 1973, The role of type-specific and cross-reacting structural antigens in the neutralization of herpes simplex virus types 1 and 2, J. Gen. Virol. 19: 217.PubMedGoogle Scholar
  95. Smith, J. D., Barnett, L., Brenner, S., and Russell, R. L., 1970, More mutant tyrosine transfer ribonucleic acids, J. Mol. Biol. 54: 1.PubMedGoogle Scholar
  96. Spring, S. B., Roizman, B., and Schwartz, J., 1968, Herpes simplex virus products in productive and abortive infection. II. Electron microscopic and immunological evidence for failure of virus envelopment as a cause of abortive infection, J. Virol. 2: 384.PubMedGoogle Scholar
  97. Stevens, J. G., 1975, Latent herpes simplex virus and the nervous system. Curr. Top. Microbiol. Immunol. 70: 31.PubMedGoogle Scholar
  98. Stevens, J. G., and Cook, M. L., 1971, Latent herpes simplex virus in spinal ganglia of mice, Science 173: 843.PubMedGoogle Scholar
  99. Subak-Sharpe, J. H., 1969, Proceedings of the First International Congress for Virology, Helsinki, 1968 (J. L. Melnick, ed.), p. 252, Karger, Basel.Google Scholar
  100. Subak-Sharpe, J. H., 1973, The genetics of herpesviruses, Cancer Res. 33: 1385.PubMedGoogle Scholar
  101. Subak-Sharpe, J. H., Brown, S. M., Ritchie, D. A., Timbury, M. C., and Halliburton I. W., 1973, Herpesvirus genetics, in: Advances in the Biosciences, Vol. 11, p. 205, Schering Workshop on Virus-Cell Interactions, Pergamon Press, Braunschweig.Google Scholar
  102. Subak-Sharpe, J. H., Brown, S. M., Ritchie, D. A., Timbury, M. C., Macnab, J. C. M., Marsden, H. S., and Hay, J., 1974, Genetic and biochemical studies with herpesvirus, Cold Spring Harbor Symp. Quant. Biol. 39: 717.Google Scholar
  103. Summers, W. P., Wagner, M., and Summers, W. C., 1975, Possible peptide chain termination mutants in thymidine kinase gene of a mammalian virus, herpes simplex virus, Proc. Natl. Acad. Sci. USA 72: 4081.PubMedGoogle Scholar
  104. Szybalski, W., and Szybalska, E. H., 1962, Drug sensitivity as a genetic marker for human cell lines, in: Approaches to the Genetic Analysis of Mammalian Cells, p. 11, University of Michigan Press, Ann Arbor.Google Scholar
  105. Takahashi, M., and Yamanishi, K., 1974, Transformation of hamster embryo and human embryo cells by temperature-sensitive mutants of herpes simplex virus type 2, Virology 61: 306.PubMedGoogle Scholar
  106. Thouless, M. E., 1972, Serological properties of thymidine kinase produced in cells infected with type 1 or type 2 herpes virus, J. Gen. Virol. 17: 307.PubMedGoogle Scholar
  107. Timbury, M. C., 1971, Temperature-sensitive mutants of herpes simplex virus type 2, J. Gen. Virol. 13: 373.PubMedGoogle Scholar
  108. Timbury, M. C., and Calder, L., 1976, Temperature-sensitive mutants of herpes simplex virus type 2: A provisional linkage map based on recombination analysis, J. Gen. Virol. 30: 179.PubMedGoogle Scholar
  109. Timbury, M. C., and Hay, J., 1975, Genetic and physiological studies with herpes simplex virus type 2 temperature-sensitive mutants, in: Oncogenesis and Herpesviruses II, p. 219, Proceedings of a Symposium, Nuremberg, 1974, IARC. Lyon.Google Scholar
  110. Timbury, M. C., and Subak-Sharpe, J. H., 1973, Genetic interactions between temperature-sensitive mutants of types 1 and 2 herpes simplex viruses, J. Gen. Virol. 18: 347.PubMedGoogle Scholar
  111. Timbury, M. C., Theriault, A., and Elton, R. A., 1974, A stable syncytial mutant of herpes simplex type 2 virus, J. Gen. Virol. 23: 219.PubMedGoogle Scholar
  112. Timbury, M. C., Hendricks, M. L., and Schaffer, P. A., 1976, A collaborative study of temperature-sensitive mutants of herpes simplex virus type 2, J. Virol. 18: 1139.PubMedGoogle Scholar
  113. Visconti, R., and Delbrück, M., 1953, The mechanism of genetic recombination in phage, Genetics 38: 5.PubMedGoogle Scholar
  114. Wadsworth, S., Jacob, R. J., and Roizman, B., 1975, Anatomy of herpes simplex virus DNA. II. Size, composition and arrangement of inverted terminal repetitions, J. Virol. 15: 1487.PubMedGoogle Scholar
  115. Watson, J. D., 1970, Molecular Biology of the Gene, 2nd ed., Benjamin, New York.Google Scholar
  116. Wildy, P., 1955, Recombination with herpes simplex virus, J. Gen. Microbiol. 13: 346.PubMedGoogle Scholar
  117. Wilkie, N. M., 1973, The synthesis and substructure of herpesvirus DNA, the distribution of alkali-labile single strand interruptions in HSV-1 DNA, J. Gen. Virol. 21: 453.PubMedGoogle Scholar
  118. Wilkie, N. M., Clements, J. B., Macnab, J. C. M., and Subak-Sharpe, J. H., 1974, The structure and biological properties of herpes simplex virus DNA, Cold Spring Harbor Symp. Quant. Biol. 39: 657.Google Scholar
  119. Williams, J. F., Young, C. S. H., and Austin, P. E., 1974, Genetic analysis of human adenovirus type 5 in permissive and nonpermissive cells, Cold Spring Harbor Symp. Quant. Biol. 39: 427.Google Scholar
  120. Zygraich, N., and Huygelen, C., 1973, In vivo behaviour of a temperature-sensitive (ts) mutant of herpesvirus hominis type 2, Arch Virusforsch. 43: 103.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • John H. Subak-Sharpe
    • 1
  • Morag C. Timbury
    • 1
  1. 1.Institute of VirologyUniversity of GlasgowScotland

Personalised recommendations