Advertisement

Defective Bacteriophages and Incomplete Prophages

  • A. Campbell
Part of the Comprehensive Virology book series (CV)

Abstract

A bacteriophage is termed defective if it is virtually unable to carry out a complete infectious cycle in known circumstances. As it is impossible to test infectivity on every host under all conditions, categorization is arbitrary and provisional. The significance of failure to infect is most readily interpretable for variants derived in a single step from an active phage. Operationally, ability to carry out a complete infectious cycle is frequently equated with plaque formation.

Keywords

Cold Spring Harbor Cold Spring Harbor Laboratory Bacteriophage Lambda Transduce Phage Active Phage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adhya, S., and Campbell, A., 1970, Crypticogenicity of bacteriophage λ, J. Mol. Biol. 50, 481.PubMedCrossRefGoogle Scholar
  2. Adhya, S., Gottesman, M., and de Crombrugghe, B., 1974, Release of polarity in Escherichia coli by gene N of phage λ: termination and antitermination of transcription, Proc. Nat. Acad. Sci. USA 71, 2534.PubMedCrossRefGoogle Scholar
  3. Appleyard, R. K., 1956, The transfer of defective λ lysogeny between strains of Escherichia coli, J. Gen. Microbiol. 14, 573.PubMedGoogle Scholar
  4. Arai, T., and Clowes, R., 1975, Replication of stringent and relaxed plasmids, in “Microbiology-1974” (D. Schlessinger, ed.), pp. 141–155, Amer. Soc. Microbiol., Washington, D.C.Google Scholar
  5. Baltimore, D., Cole, D. N., Villa-Komaroff, L., and Spector, D., 1974, Poliovirus defective interfering particles, in “Mechanisms of Virus Disease” (W. S. Robinson and C. F. Fox, eds.), pp. 117–130, Benjamin, Menlo Park, California.Google Scholar
  6. Banerjee, A. K., Rensing, U., and August, J. T., 1969, Replication of a natural 6 S RNA by the ; RNA polymerase, J. Mol. Biol. 45, 181.PubMedCrossRefGoogle Scholar
  7. Baron, L. S., Penido, E., Rymon, I. R., and Falkow, S., 1970, Behavior of coliphage lambda in hybrids between Escherichia coli and Salmonella, J. Bacteriol. 102, 221.PubMedGoogle Scholar
  8. Barrett, K., Barclay, S., Calendar, R., Lindqvist, B., and Six, E., 1974, Reciprocal frtfrtsactivation in a two chromosome phage system, in “Mechanisms of Virus Disease” (W. S. Robinson and C. F. Fox, eds.), pp. 385–402, Benjamin, Menlo Park, California.Google Scholar
  9. Beckwith, J. R., 1970, Lac: the genetic system, in “The Lactose Operon” (J. R. Beckwith and D. Zipser, eds.), pp. 5–26, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  10. Benzer, S., 1957, The elementary units of heredity, in “The Chemical Basis of Heredity” (W. D. McElroy and B. Glass, eds.), pp. 70–98, Johns Hopkins Press, Baltimore, Maryland.Google Scholar
  11. Berg, C. M., and Curtiss, R., III, 1967, Transposition derivatives of an Hfr strain of Escherichia coli K-12, Genetics 56, 503.PubMedGoogle Scholar
  12. Berg, D. E., 1974a, Genes of phage λ essential for λ dv plasmids, Virology 62, 224.PubMedCrossRefGoogle Scholar
  13. Berg, D. E., 1974b, Genetic evidence for two types of gene arrangements in new λ dv plasmid mutants, J. Mol. Biol. 86, 59.PubMedCrossRefGoogle Scholar
  14. Berg, D. E., and Kellenberger-Gujer, G., 1974, N protein causes the λ dv plasmid to inhibit heteroimmune phage λ imm 434 growth and stimulates X dv replication, Virology 62, 234.PubMedCrossRefGoogle Scholar
  15. Bernstein, A., Rolfe, B., and Onodero, K., 1973, The E. coli cell surface: isolation of X transducing phages carrying the tol PAB cluster, Mol. Gen. Genet. 121, 325.PubMedCrossRefGoogle Scholar
  16. Bertani, L. E., and Bertani, G., 1971, Genetics of P 2 and related phages, Adv. Genet. 16, 199.PubMedCrossRefGoogle Scholar
  17. Botstein, D., and Herskowitz, I., 1974, Properties of hybrids between Salmonella phage P 22 and coliphage λ, Nature (London) 251, 584.PubMedCrossRefGoogle Scholar
  18. Botstein, D., and Suskind, M., 1974, Regulation of lysogeny and the evolution of temperate bacterial viruses, in “Mechanisms of Virus Disease” (W. S. Robinson and C. F. Fox, eds.), pp. 363–384, Benjamin, Menlo Park, California.Google Scholar
  19. Boon, T., 1972, Inactivation of ribosomes in vitro by colicin E3, Proc. Nat. Acad. Sci. USA 68,2421.CrossRefGoogle Scholar
  20. Brachet, P., and Green, B. R., 1970, Functional analysis of early defective mutants of coliphage λ, Virology 40, 792.PubMedCrossRefGoogle Scholar
  21. Bradley, D. E., 1967, Ultrastructure of bacteriophages and bacteriocins, Bacteriol. Rev. 31, 230.PubMedGoogle Scholar
  22. Busse, H. G., and Baldwin, R. L., 1972, Tandem genetic duplications of phage lambda. II. Evidence for structure and location of endpoints, J. Mol. Biol. 65, 401.PubMedCrossRefGoogle Scholar
  23. Calendar, R., Lindqvist, B., Sironi, G., and Clark, A. J., 1970, Characterization of REP mutants and their interaction with P2 phage, Virology 40, 72.PubMedCrossRefGoogle Scholar
  24. Campbell, A., 1968. Techniques for studying defective bacteriophages, in “Methods of Virology” (K. Maramorosch and H. Koprowski. eds.). Vol. 4, pp. 279–320, Academic Press, New York.Google Scholar
  25. Campbell, A., 1971, Genetic structure, in “The Bacteriophage λ” (A. D. Hershey, ed.), pp. 13–44, Cold Spring Harbor Laboratories, Cold Spring Harbor, New York.Google Scholar
  26. Campbell, A., 1972, Episomes in evolution, in “Evolution of Genetic Systems” (H. H. Smith, ed.), pp. 534–562 (Brookhaven Symposia in Biology, Volume 23).Google Scholar
  27. Chakrabarty, A. M., and Gunsalus, I. C, 1969, Defective phage and chromosome mobilization in Pseudomonasputida, Proc. Nat. Acad. Sci. USA 64, 1217.PubMedCrossRefGoogle Scholar
  28. Chan, R. K., Botstein, D., Watanabe, T., and Okada, Y., 1972, Specialized transduction of tetracycline resistance by phage P 22 in Salmonella typhimurium ,II. Properties of a high-frequency-transducing lysate, Virology 50, 883.PubMedCrossRefGoogle Scholar
  29. Chattoraj, D. K., and Inman, R. B., 1974, Location of DNA ends in P 2, 186, P 4, and lambda bacteriophage heads, J. Mol. Biol. 87, 11.PubMedCrossRefGoogle Scholar
  30. Chattoraj, D. K., and Inman, R. D., 1975, Electron microscope heteroduplex mapping of P 2 Hy Dis bacteriophage DNA, Virology 55, 174.CrossRefGoogle Scholar
  31. Chow, L. T., and Davidson, N., 1973, Electron microscopy of the structures of the Bacillus subtilis prophages SPO 2 and ø105, J. Mol. Biol. 75, 257.PubMedCrossRefGoogle Scholar
  32. Chow, L. T., Davidson, N., and Berg, D., 1974, Electron microscope study of the structure of λ dv DNA’s, J. Mol. Biol. 86, 69.PubMedCrossRefGoogle Scholar
  33. Cohen, D., 1959, A variant of phage P 2 originating in Escherichia coli ,strain B, Virology 7, 112.CrossRefGoogle Scholar
  34. Cohen, S. S., and Barner, H. D., 1954, Studies of unbalanced growth in Escherichia coli, Proc. Nat. Acad. Sci. USA 40, 885.PubMedCrossRefGoogle Scholar
  35. Coppo, A., Manzi, A., Pulitzer, J. F., and Takahashi, H., 1973, Abortive bacteriophage T 4 head assembly in mutants of Escherichia coli, J. Mol. Biol. 76, 61.PubMedCrossRefGoogle Scholar
  36. Cross, R. A., and Lieb, M., 1967, Heat inducible A phage, V. Induction of prophage with mutations in genes O, P ,and R, Genetics 57, 549.PubMedGoogle Scholar
  37. Davidson, N., Deonier, R. C., Hu, S., and Ohtsubo, E., 1975, Electron microscope heteroduplex studies of sequence relations among plasmids of Escherichia coli. X. Deoxyribonucleic acid sequence organization of F and of F-primes and the sequences involved in Hfr formation, in “Microbiology-1974” (D. Schlessinger, ed.), Amer. Soc. Microbiol., Washington, D.C.Google Scholar
  38. Doermann, A. H., Eiserling, F. A., and Boehner, L., 1973, Genetic control of capsid length in bacteriophage T 4. I. Isolation and preliminary description of four new mutants, J. Virol. 12, 374.PubMedGoogle Scholar
  39. Dove, W., Inokuchi, H., and Stevens, W. F., 1971, Replication control in phage lambda, in “The Bacteriophage Lambda” (A. D. Hershey, ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  40. Duckworth, D. H., 1970, The metabolism of T 4 phage infected cells. I. Macromolecular synthesis and transport of nucleic acids and protein precursors, Virology 40, 673.PubMedCrossRefGoogle Scholar
  41. Echols, H., 1971, Regulation of lytic development, in “The Bacteriophage Lambda” (A. u. Hersney, ed.), pp. 247–270, cold spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  42. Echols, H., 1972, Developmental pathways for the temperate phage: lysis vs. lysogeny, Annu. Rev. Genet. 6, 157.PubMedCrossRefGoogle Scholar
  43. Eisen, H., and Ptashne, M., 1971, Regulation of repressor synthesis, in “The Bacteriophage Lambda” (A. D. Hershey, ed.), pp. 239–245, Cold Spring Harbor, New York.Google Scholar
  44. Eisen, H. A., Fuerst, C. R., Siminovitch, L., Thomas, R., Lambert, L., Pereira da Silva, L., and Jacob, F., 1966, Genetics and physiology of defective lysogeny in K 12 (λ): Studies of early mutants, Virology 30, 224.PubMedCrossRefGoogle Scholar
  45. Emmons, S. W., and Thomas, J. O., 1975, Tandem genetic duplications in phage lambda. IV. The location of spontaneously arising tandem duplications, J. Mol. Biol. 91, 147.PubMedCrossRefGoogle Scholar
  46. Fiandt, M., Hradecna, Z., Lozeron, H. A., and Szybalski, W., 1971, Electron micrographic mapping of deletions, insertions, inversions, and homologies in the DNAs of coliphage lambda and phi 80, in “The Bacteriophage Lambda” (A. D. Hershey, ed.), pp. 329–354, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  47. Fiandt, M., Szybalski, W., and Malamy, M. H., 1972, Polar mutations in lac, gal and X consist of a few IS-DNA sequences inserted with either orientation, Mol. Gen. Genet. 119, 223.CrossRefGoogle Scholar
  48. Fischer-Fantuzzi, L., and Calef, E., 1964, A type of λ prophage unable to confer immunity, Virology 23, 209.PubMedCrossRefGoogle Scholar
  49. Franklin, N. C, 1971, Illegitimate recombination, in ’The Bacteriophage Lambda (A. D. Hershey, ed.), pp. 175–194, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  50. Franklin, N. C, 1974, Altered reading of genetic signals fused to the N operon of bacteriophage X: Genetic evidence for modification of polymerase by the protein product of the N gene, J. Mol. Biol. 89, 33.PubMedCrossRefGoogle Scholar
  51. Franklin, N. C., Dove, W. F., and Yanofsky, C., 1965, A linear insertion of a prophage into the chromosome of E. coli shown by deletion mapping, Biochem, Biophys. Res. Commun. 18, 910.CrossRefGoogle Scholar
  52. Friedman, D. I., 1971, A bacterial mutant affecting lambda development, in “The Bacteriophage λ” (A. D. Hershey, ed.), pp. 733–738, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  53. Garro, A. J., and Marmur, J., 1970, Defective bacteriophages, J. Cell Physiol. 76, 253.PubMedCrossRefGoogle Scholar
  54. Georgopolous, C. P., 1971, A bacterial mutation affecting N function, in “The Bacteriophage λ” (A. D. Hershey, ed.), pp. 639–646, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  55. Georgopolous, C. P., and Herskowitz, I., 1971, Escherichia coli mutants blocked in lambda DNA synthesis, in “The Bacteriophage λ” (A. D. Hershey, ed.), pp. 553–564, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  56. Georgopolous, C. P., Hendrix, R. W., Casjens, S. R., and Kaiser, A. D., 1973, Host participation in bacteriophage lambda head assembly, J. Mol. Biol. 76, 45.CrossRefGoogle Scholar
  57. Gerdes, J. C., and Romig, W. R., 1975, Complete and defective bacteriophages of classical Vibrio cholerae Relationship to the kappa type bacteriophages, J. Virol. 15, 1231.PubMedGoogle Scholar
  58. Ghysen, A., and Pironio, M., 1972, Relationship between the N function of bacteriophage N and host RNA polymerase, J. Mol. Biol. 65, 259.PubMedCrossRefGoogle Scholar
  59. Goldstein, R., Lengyel, J.. Pruss, G., Barrett, K., Calendar, R., and Six, E., 1974, Head size determination and the morphogenesis of satellite phage P4, Curr. Top. Microbiol. Immunol. 68, 59.PubMedGoogle Scholar
  60. Gottesman, M. M.. Gottesman, M. E.. Gottesman. S., and Gellert. M., 1974, Characterization of λ reverse as an E. coli phage carrying a unique set of host-derived recombination functions, J. Mol. Biol. 88, 471.PubMedCrossRefGoogle Scholar
  61. Gottesman, S., and Beckwith, J. R., 1969. Directed transposition of the arabinose operon: a technique for the isolation of specialized transducing bacteriophages for any Escherichia coli gene, J. Mol. Biol. 44, 117.PubMedCrossRefGoogle Scholar
  62. Grady, L. J., Cowie, D. B.. and Campbell. W. P., 1971. Deoxyribonucleic acid hybridization analysis of the defective bacteriophage carried by strain 15 of Escherichia coli, J. Virol. 8, 850.PubMedGoogle Scholar
  63. Greer, H. A., 1975, The kil gene of bacteriophage lambda. Ph.D. thesis, Massachusetts Institute of Technology. Cambridge, Massachusetts.Google Scholar
  64. Griffith, J., and Kornberg, A., 1974, Mini M 13 bacteriophage: circular fragments of M 13 DNA are replicated and packaged during normal infections, Virology 59, 139.PubMedCrossRefGoogle Scholar
  65. Grodzicker, T., Arditti, R. R., and Eisen, H., 1972, Establishment of repression by lambdoid phage in catabolite activator protein and adenylate cyclase mutants of Escherichia coli, Proc. Nat. Acad. Sci. USA 69, 366.PubMedCrossRefGoogle Scholar
  66. Guthrie, C, Nashimoto, H., and Nomura, M., 1969, Studies on the assembly of ribosomes in vivo, Cold Spring Harbor Symp. Quant. Biol. 34, 69.CrossRefGoogle Scholar
  67. Haas, M., and Yoshikawa, H., 1969, Defective bacteriophage PBSH in Bacillus subtilis. II. Intracellular development of the induced prophage, J. Virol. 3, 248.PubMedGoogle Scholar
  68. Haruna, I., and Spiegelman, S., 1965, Specific template requirements of RNA repli-case, Proc. Nat. Acad. Sci. USA 54, 1189.PubMedCrossRefGoogle Scholar
  69. Hendrix, R. W., and Casjens, S. R., 1975, Assembly of bacteriophage lambda heads: protein processing and its genetic control in petit λ assembly, J. Mol. Biol. 91, 187.PubMedCrossRefGoogle Scholar
  70. Hershey, A. D., 1971, Comparative molecular structure among related phage DNAs, Carnegie Inst. Wash. Yearb. 70, 3.Google Scholar
  71. Hershey, A. D., and Dove, W., 1971, Introduction to lambda, in “The Bacteriophage Lambda” (A. D. Hershey, ed.), Cold Spring Harbor Laboratories, Cold Spring Harbor, New York.Google Scholar
  72. Herskowitz, I., and Signer, E., 1970, a site essential for expression of all late genes in bacteriophage λ, J. Mol. Biol. 47, 545.PubMedCrossRefGoogle Scholar
  73. Herskowitz, I., and Signer, E. R., 1974, Substitution mutations in bacteriophage X with new specificity for late gene expression, Virology 61, 112.PubMedCrossRefGoogle Scholar
  74. Hobom, G., and Hogness, D. S., 1974, The role of recombination in the formation of circular oligomers of the λ dvl plasmid, J. Mol. Biol. 88, 65.PubMedCrossRefGoogle Scholar
  75. Huang, A. S., and Baltimore, D., 1970, Defective virus particles and viral disease processes, Nature (London) 226, 325.PubMedCrossRefGoogle Scholar
  76. Ikeda, H., Inuzuka, M., and Tomizawa, J., 1970, P 1 -like plasmid in Escherichia coli 15, J. Mol. Biol. 50,457.PubMedCrossRefGoogle Scholar
  77. Jacob, F., and Wollman, E. L., 1954, Étude génétique d’un bacteriophage tempéré d’Escherichia coli. I. Le systéme génétique du bacteriophage, Ann. Inst. Pasteur 87, 663.Google Scholar
  78. Jacob, F., and Wollman, E. L., 1961, ’Sexuality and the Genetics of Bacteria, Academic Press, New York.Google Scholar
  79. Jacob, F., Fuerst, C., and Wollman, E., 1957, Recherches sur les bacteries lysogénes defectives. II. Les types physiologíques liés aux mutations du prophage, Ann. Inst. Pasteur 93, 724.Google Scholar
  80. Jakes, J., Zinder, N. D., and Boon, T., 1974, Purification and properties of the colicin E3 immunity protein, J. Mol. Biol. 249, 438.Google Scholar
  81. Kacian, D. L., Mills, D. R., Kramer, F. R., and Spiegelman, S., 1972, A replicating RNA molecule suitable for a detailed analysis of extracellular evolution and replication, Proc. Nat. Acad. Sci. USA 69, 3038.PubMedCrossRefGoogle Scholar
  82. Kaiser, A. D., and Jacob, F., 1957, Recombination between related temperate bacteriophages and the genetic control of immunity and prophage localization, Virology 4, 509.PubMedCrossRefGoogle Scholar
  83. Kaiser, D., 1971, Lambda DNA replication, in “The Bacteriophage Lambda” (A. D. Hershey, ed.), pp. 195–210, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  84. Kaiser, D., Syvanen, M., and Masuda, T., 1975, DNA packaging steps in bacteriophage lambda head assembly, J. Mol. Biol. 91, 175.PubMedCrossRefGoogle Scholar
  85. Kayajanian, G., 1970, Gal transduction by phage λ: On the origin and nature of LFT transducing genomes, Mol. Gen. Genet. 108, 338.PubMedCrossRefGoogle Scholar
  86. Kellenberger-Gujer, G., Boy de la Tour, E., and Berg, D. E., 1974, Transfer of the λ dv plasmid to new bacterial hosts, Virology 58, 576.PubMedCrossRefGoogle Scholar
  87. Kondo, E., and Mitsuhashi, S., 1964, Drug resistance of enteric bacteria. IV. Active transducing bacteriophage P 1 CM produced by the combination of R factor with bacteriophage P 1, J. Bacteriol. 88, 1266.PubMedGoogle Scholar
  88. Kondo, E., and Mitsuhashi, S., 1966, Drug resistance of enteric bacteria. VI. Introduction of bacteriophage P 1 CM into Salmonella typhi and formation of P 1 dCM and F-CM elements, J. Bacteriol. 91, 1787.PubMedGoogle Scholar
  89. Konisky, J., 1975, Interaction of colicin la with Escherichia coli, in “Microbiology-1974” (D. Schlessinger, ed.), pp. 213–218, Amer. Soc. Microbiol., Washington, D.C.Google Scholar
  90. Kopecko, D. J., and Cohen, S. N., 1975, Site-specific recA-independent recombination between bacterial plasmids: Involvement of palindromes at the recombinational loci, Proc. Nat. Acad. Sci. USA 72, 1373.PubMedCrossRefGoogle Scholar
  91. Kumar, S., and Szybalski, W., 1970, Transcription of the λ dv plasmid and inhibition of X phages in X dv carrier cells of Escherichia coli, Virology 41, 665.PubMedCrossRefGoogle Scholar
  92. Lee, C. S., Davis, R. W., and Davidson, N., 1970, A physical study by electron microscopy of the terminally repetitious, circularly permuted DNA from the coliphage particles of Escherichia coli 15, J. Mol. Biol. 48, 1.PubMedCrossRefGoogle Scholar
  93. Lieb, M., 1972, Properties of polylysogens containing derepressed λ N-prophage: Interference with the replication of superinfecting λ, Virology 49, 582.PubMedCrossRefGoogle Scholar
  94. Liedke-Kulke, M., and Kaiser, A. D., 1967, Genetic control of prophage insertion specificity in bacteriophages X and 21, Virology 32, 465.PubMedCrossRefGoogle Scholar
  95. Lindqvist, B. H., 1974, Expression of phage transcription in P 2 lysogens infected with helper-dependent coliphage P 4, Proc. Nat. Acad. Sci. USA 71, 2752.PubMedCrossRefGoogle Scholar
  96. Little, J. W., and Gottesman, M., 1971, Defective lambda particles whose DNA carries only a single cohesive end, in “The Bacteriophage Lambda” (A. D. Hershey, ed.), pp. 371–394, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  97. Luria, S. E., and Delbruck, M., 1943, Mutations of bacteria from virus sensitivity to virus resistance, Genetics 28, 491.PubMedGoogle Scholar
  98. Luria, S. E., Adams, M. J., and Ting, R. C., 1960, Transduction of lactose-utilizing ability among strains of E. coli and S. dysenteriae, Virology 12, 348.PubMedCrossRefGoogle Scholar
  99. Lwoff, A., 1944, “L’évolution physiologique, Étude des pertes de fonction chez les microorganismes,” Hermann et Cie, Paris.Google Scholar
  100. Lwoff, A., 1953, Lysogeny, Bacteriol. Rev. 17, 269.PubMedGoogle Scholar
  101. Manly, K. F., Signer, E. R., and Radding, C. M., 1969, Non-essential functions of bacteriophage λ, Virology 37, 177.PubMedCrossRefGoogle Scholar
  102. Marchelli, C., Pica, L., and Soller, A., 1968, The cryptogenic factor in λ, Virology 34, 650.PubMedCrossRefGoogle Scholar
  103. Matsubara, K., 1972a, Plasmid formation from bacteriophage λ as a result of interference by resident plasmid λ dv, Virology 47, 618.PubMedCrossRefGoogle Scholar
  104. Matsubara, K. M., 1972b, Interference in phage growth by a resident plasmid λ dv. I The role of interference, Virology 50, 713.PubMedCrossRefGoogle Scholar
  105. Matsubara, K., 1974, Preparation of plasmid λdv from bacteriophage λ: role of promoter-operator in the plasmid replicon, J. Virol. 13, 596.PubMedGoogle Scholar
  106. Matsubara, K., and Kaiser, A. D., 1968, λ dv An autonomously replicating DNA fragment, Cold Spring Harbor Symp. Quant. Biol. 33, 769.CrossRefGoogle Scholar
  107. Mills, D. R., Kramer, F. R., and Spiegelman, S., 1973, Complete nucleotide sequence of a replicating RNA molecule, Science 180, 916.PubMedCrossRefGoogle Scholar
  108. Mosig, G., Carnighan, J. R., Bibring, J. B., Cole, R., Bock, H.-G.O., and Bock, S., 1972, Coordinate variation in lengths of deoxyribonucleic acid molecules and head lengths in morphological variants of bacteriophage T 4, J. Virol. 9, 857.PubMedGoogle Scholar
  109. Mount, D. W. A., Harris, A. W., Fuerst, C. R., and Siminovitch, I ., 1968, Mutations in bacteriophage X affecting particle morphogenesis, Virology 35, 134.PubMedCrossRefGoogle Scholar
  110. Murialdo, H., and Siminovitch, L., 1972, The morphogenesis of phage lambda. V. Form-determining function of the genes required for the assembly of the head, Virology 48, 824.PubMedCrossRefGoogle Scholar
  111. Novick, R., 1967, Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus, Virology 33, 155.PubMedCrossRefGoogle Scholar
  112. Novick, R., Wyman, L., Bouanchoud, D., and Murphy, E., 1975, Plasmid life cycles in Staphylococcus aureus, in “Microbiology-1974” (D. Schlessinger, ed.), pp. 115–129, Amer. Soc. Microbiol., Washington, D.C.Google Scholar
  113. Parma, D. H., 1969, The structure of genomes of individual petit particles of the bacteriophage T 4D mutant E920/96/41, Genetics 63, 247.PubMedGoogle Scholar
  114. Press, R., Glansdorff, N., Miner, P., de Vries, J., Kadner, R., and Maas, W. K., 1971, Isolation of transducing particles of 080 bacteriophage that carry different regions of the Escherichia coli genome, Proc. Nat. Acad. Sci. USA 68, 795.PubMedCrossRefGoogle Scholar
  115. Pruss, G., Barrett, K., Lengyel, J., Goldstein, R., and Calendar, R., 1974, Phage head size determination and head protein cleavage in vitro, J. Supramol. Struct. 2, 337.PubMedCrossRefGoogle Scholar
  116. Ptashne, K., and Cohen, S. N., 1975, Occurrence of insertion sequences (IS) regions on plasmid deoxyribonucleic acid as direct and inverted nucleotide sequence duplications, J. Bacteriol. 122, 776.PubMedGoogle Scholar
  117. Ptashne, M., 1971, Repressor and its action, in “The Bacteriophage Lambda” (A. D. Hershey, ed.), pp. 221–237, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  118. Radding, C. M., Szpirer, J., and Thomas, R., 1967, The structural gene for λ exonu-clease, Proc. Nat. Acad. Sci. USA 57, 277.PubMedCrossRefGoogle Scholar
  119. Reichardt, L. F., 1975a, Control of bacteriophage lambda repressor synthesis after phage infection. The role of the N, cII, cIII and cro products, J. Mol. Biol. 93, 267.PubMedCrossRefGoogle Scholar
  120. Reichardt, L. F., 1975b, Control of bacteriophage lambda repressor synthesis: Regulation of the maintenance pathway by the cro and cI products, J. Mol. Biol. 93, 289.PubMedCrossRefGoogle Scholar
  121. Reif, H. J., and Saedler, H., 1975, IS1 is involved in deletion formation in the gal region of E. coli K 12, Mol. Gen. Genet. 137, 17.PubMedGoogle Scholar
  122. Rosner, J. L., 1972, Formation, induction and curing of bacteriophage P 1 lysogens,Google Scholar
  123. Saedler, H., Reif, H. J., Hu, S., and Davidson, N., 1974, IS2, a genetic element for turn-off and turn-on of gene activity in E. coli, Mol. Gen. Genet. 132, 265.CrossRefGoogle Scholar
  124. Sato, K., and Campbell, A., 1970, Specialized transduction of galactose by lambda phage from a deletion lysogen, Virology 41, 474.PubMedCrossRefGoogle Scholar
  125. Schleif, R., 1972, The specificity of lamboid phage late gene induction (lamboid phage late gene specificity), Virology 40, 610.CrossRefGoogle Scholar
  126. Schmieger, H., and Backhaus, H., 1973, The origin of DNA in transducing particles in P 22-mutants with increased transduction-frequencies (HT-mutants), Mol. Gen. Genet. 120, 181.PubMedCrossRefGoogle Scholar
  127. Scott, J. R., 1970a, A defective P 1 prophage with a chromosomal location, Virology 40, 144.PubMedCrossRefGoogle Scholar
  128. Scott, J. R., 19706, Clear plaque mutants of phage P 1, Virology 41, 66.PubMedCrossRefGoogle Scholar
  129. Scott, J. R., 1973, Phage P 1 cryptic. II. Location and regulation of prophage genes, Virology 53, 327.PubMedCrossRefGoogle Scholar
  130. Scott, J. R., 1975, Superinfection immunity and prophage repression in phage P 1, Virology 65, 173.PubMedCrossRefGoogle Scholar
  131. Shimada, K., and Campbell, A., 1974, Int-constitutive mutants of bacteriophage lambda, Proc. Nat. Acad. Sci. USA 71, 237.PubMedCrossRefGoogle Scholar
  132. Shimada, K., Weisberg, R. A., and Gottesman, M. E., 1972, Prophage lambda at unusual chromosomal locations. I. Location of the secondary attachment sites and properties of the lysogens, J. Mol. Biol. 63, 483.PubMedCrossRefGoogle Scholar
  133. Shimada, K., Weisberg, R. A., and Gottesman, M. E., 1973, Prophage lambda at unusual chromosomal locations. II. Mutations induced by bacteriophage lambda in Escherichia coli K 12, J. Mol. Biol. 80, 297.PubMedCrossRefGoogle Scholar
  134. Shimada, K., Weisberg, R. A., and Gottesman, M. E., 1975, Prophage lambda at unusual chromosomal locations. III. The components of secondary attachment sites, J. Mol. Biol. 93,415.PubMedCrossRefGoogle Scholar
  135. Sidikaro, J., and Nomura, M., 1974, E3 immunity substance, a protein from E3-colicinogenic cells that accounts for their immunity to colicin E3, J. Biol. Chem. 249,445.PubMedGoogle Scholar
  136. Signer, E. R., 1969, Plasmid formation: A new mode of lysogeny by phage λ, Nature (London) 223, 158.PubMedCrossRefGoogle Scholar
  137. Simon, M. N., Davis, R. W., and Davidson, N., 1971, Heteroduplexes of DNA molecules of lambdoid phages: Physical mapping of their base sequence relationships by electron microscopy, in ’The Bacteriophage Lambda (A. D. Hershey, ed.), Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.Google Scholar
  138. Six, E. W., and Klug, C. A. C., 1973, Bacteriophage P 4: A satellite virus depending on a helper such as P 2, Virology 51, 327.PubMedCrossRefGoogle Scholar
  139. Skalka, A., and Enquist, L. W., 1974, Overlapping pathways for replication, recombination and repair in bacteriophage lambda, in “Mechanism of DNA replication” (A. R. Kolber and M. Kohiyama, eds.), pp. 181–200, Plenum Press, New York.CrossRefGoogle Scholar
  140. Starlinger, P., and Saedler, H., 1972, Insertion mutations in microorganisms, Biochimie 54, 177.PubMedCrossRefGoogle Scholar
  141. Sternberg, N., 1973, Properties of a mutant of Escherichia coli defective in bacteriophage λ head formation. II. The propagation of phage λ, J. Mol. Biol. 76, 35.Google Scholar
  142. Stodolsky, M., 1973, Bacteriophage P 1 derivatives with bacterial genes: A heterozy-gote enrichment method for the selection of P 1 dpro lysogens, Virology 53, 471.PubMedCrossRefGoogle Scholar
  143. Streisinger, G., Emrich, J., and Stahl, M. M., 1967, Chromosome structure in phage T 4. III. Terminal redundancy and length determination, Proc. Nat. Acad. Sci. USA 57, 292.PubMedCrossRefGoogle Scholar
  144. Sunshine, M. G. and Sauer, B., 1975, A bacterial mutation blocking P2 phage late gene expression. Proc. Nat. Acad. Sci. USA 72, 2770.PubMedCrossRefGoogle Scholar
  145. Szybalski, W., 1974, Bacteriophage Lambda, in “Handbook of Genetics” (R. C. King, ed.), pp. 309–322, Plenum Press, New York.Google Scholar
  146. Szybalski, W., and Szybalski, E. H., 1974, Visualization of the evolution of viral genomes, in “Viruses, Evolution and Cancer” (E. Kurstak and K. Maramorosch, eds.), pp. 563–582, Academic Press, New York.Google Scholar
  147. Takeda. Y., Matsubara, K., and Ogata, K., 1975, Regulation of early gene expression in bacteriophage lambda: Effect of tof mutations on strand-specific transcription, Virology 65, 374.CrossRefGoogle Scholar
  148. Thurm, P., and Garro, A. J., 1975a, Bacteriophage-specific protein synthesis during induction of the defective Bacillus subtilis bacteriophage PBSX, J. Virol. 16, 179.PubMedGoogle Scholar
  149. Thurm, P., and Garro, A. J., 1975b, Isolation and characterization of prophage mutants of the defective Bacillus subtilis bacteriophage PBSX, J. Virol. 16, 184.PubMedGoogle Scholar
  150. Toussaint, A., 1969, Insertion of phage Mu-1 within prophage X: A new approach for studying the control of late functions in bacteriophage λ, Mol. Gen. Genet. 106, 89.PubMedCrossRefGoogle Scholar
  151. Tye, B., Chan, R. K., and Botstein, D., 1974a, Packaging of an oversize transducing genome by phage P 22, J. Mol. Biol. 85, 485.PubMedCrossRefGoogle Scholar
  152. Tye, B., Huberman, J., and Botstein, 1974b, Nonrandom circular permutation of phage P 22 DNA, J. Mol. Biol. 85, 501.PubMedCrossRefGoogle Scholar
  153. Vallee, M., and Cornett, J. B., 1972, A new gene of bacteriophage T 4 determining immunity against superinfecting ghosts and phages in T 4-infected Escherichia coli, Virology 48, 777.PubMedCrossRefGoogle Scholar
  154. Vallee, M., Cornett, J. B., and Bernstein, H., 1972, The action of bacteriophage T 4 ghosts on Escherichia coli and the immunity to this action developed in cells preinfected with T 4, Virology 48, 766.PubMedCrossRefGoogle Scholar
  155. Walker, D. H., and Anderson, T. F., 1970, Morphological variants of coliphage P 1,J. Virol. 5,765.PubMedGoogle Scholar
  156. Walker, D. H., Mosig, G., and Bajer, M. E., 1972, Bacteriophage T 4 head models based on icosahedral symmetry, J. Virol. 9, 872.PubMedGoogle Scholar
  157. Wang, J. C., and Kaiser, A. D., 1973, Evidence that the cohesive ends of mature λ DNA are generated by the gene λ product, Nature (London) New Biol. 241, 16.Google Scholar
  158. Weil, J., deWein, N., and Casale, A., 1975, Morphogenesis of X with genomes containing excess DNA: Functional particles containing 12 and 15% excess DNA, Virology 63, 352.PubMedCrossRefGoogle Scholar
  159. Weisberg, R., and Gottesman, M., 1969, The integration and excision defect of bacteriophage λ dg, J. Mol. Biol. 46, 565.PubMedCrossRefGoogle Scholar
  160. Westmoreland, B. C, Szybalski, W., and Ris, H., 1969, Mapping of deletions and substitutions in heteroduplex DNA molecules of bacteriophage lambda by electron microscopy, Science 163, 1343.PubMedCrossRefGoogle Scholar
  161. Wilgus, G. S., Mural, R. J., Friedman, D. I., Fiandt, M., and Szybalski, W., 1973, λ imm λ 434: A phage with a hybrid immunity region, Virology 56, 46.PubMedCrossRefGoogle Scholar
  162. Zavada, V., and Calef, E., 1969, Chromosomal rearrangements in Escherichia coli strains carrying the cryptic lambda prophage, Genetics 61, 9.PubMedGoogle Scholar
  163. Zinder, N. D., 1960, Hybrids of Escherichia and Salmonella, Science 131, 813.PubMedCrossRefGoogle Scholar
  164. Zissler, J., Signer, E., and Schaefer, F., 1971, The role of recombination in growth of bacteriophage lambda. I. The gamma gene, in “The Bacteriophage Lambda” (A. D. Horshey, ed.) ,pp. 155 168, Cold Spring Harbor I aboratory Cold Spring Harbor. New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • A. Campbell
    • 1
  1. 1.Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations