Advertisement

Bacteriophage λ: The Lysogenic Pathway

  • R. A. Weisberg
  • S. Gottesman
  • M. E. Gottesman
Part of the Comprehensive Virology book series (CV)

Abstract

Coliphage λ is a temperate phage, so-called because it can grow in two distinct ways. During lytic growth, common to both temperate and intemperate phage, the virus chromosome is usually replicated several hundredfold within the span of a single cellular generation, the replicas are packaged into mature virus particles by newly synthesized virus proteins, and the particles are released as a result of cell lysis. Temperate viruses alone, however, are capable of growing in harmony with their hosts. Lambda, the best studied of the temperate coliphages, accomplishes this by synthesizing a protein that promotes the insertion of the virus chromosome into the host chromosome and by synthesizing a repressor that inhibits the further expression of virus genes. The resulting cell is called a lysogen, the process, lysogenization, and the inserted virus chromosome, prophage. [See Herskowitz (1973) for a recent review.]

Keywords

Cold Spring Harbor Attachment Site Bacteriophage Lambda Host Chromosome Transduce Phage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adhya, S., Cleary, P., and Campbell, A., 1968, A deletion analysis of prophage lambda and adjacent genetic regions, Proc. Nat. Acad. Sci. USA 61, 956.PubMedCrossRefGoogle Scholar
  2. Adhya, S., Gottesman, M., and de Crombrugghe, B., 1974, Release of polarity in Escherichia coli by Gene N of Phage λ: Termination and antitermination of transcription, Proc. Natl. Acad. Sci. USA 71, 2534.PubMedCrossRefGoogle Scholar
  3. Allet, B., Roberts, R., Gesteland, R., and Solem, R., 1974, Class of promoter sites for Escherichia coli DNA-dependent RNA polymerase, Nature 249, 217.PubMedCrossRefGoogle Scholar
  4. Astrachan, L., and Miller, J., 1972, Regulation of X rex expression after infection of Escherichia coli K by lambda bacteriophage, J. Virol. 9, 510.PubMedGoogle Scholar
  5. Attardi, G., Naono, S., Rouviere, J., Jacob, F., and Gros, F., 1963, Production of messenger RNA and regulation of protein synthesis, Cold Spring Harbor Symp. Quant. Biol. 28, 363.CrossRefGoogle Scholar
  6. Ausubel, F., 1974, Radiochemical purification of bacteriophage λ integrase, Nature 247, 152.PubMedCrossRefGoogle Scholar
  7. Bailone, A., Blanco, M., and Devoret, R., 1975, E. coli K12 inf: A mutant deficient in prophage induction and cell filamentation, Mol. Gen. Genet. 136, 291.PubMedCrossRefGoogle Scholar
  8. Belfort, M., and Wulff, D., 1971, A mutant of Escherichia coli that is lysogenized with high frequency, in The Bacteriophage λ (A. D. Hershey, ed.), p. 739, Cold Spring Harbor, New York.Google Scholar
  9. Belfort, M., and Wulff, D., 1973a, An analysis of the processes of infection and induction of E. coli mutant hfl-1 by bacteriophage lambda, Virology 55, 183.PubMedCrossRefGoogle Scholar
  10. Belfort, M., and Wulff, D., 1973b, Genetic and biochemical investigation of the Escherichia coli mutant hfl-1 which is lysogenized at high frequency by bacteriophage lambda, J. Bacteriol. 115, 299.PubMedGoogle Scholar
  11. Belfort, M., and Wulff, D., 1974, The roles of the lambda cIII gene and the Escherichia coli catabolite gene activation system in the establishment of lysogeny by bacteriophage lambda, Proc. Nat. Acad. Sci. USA 71, 779.PubMedCrossRefGoogle Scholar
  12. Benzer, S., and Champe, S., 1962, A change from sense to nonsense in the genetic code, Proc. Natl. Acad. Sci. USA 48, 1114.PubMedCrossRefGoogle Scholar
  13. Bertani, G., 1956, The role of phage in bacterial genetics, Brookhaven Symp. Biol. 8, 50.PubMedGoogle Scholar
  14. Blattner, F., and Dahlberg, J., 1972, RNA synthesis startpoints in bacteriophage X. Are the promoter and operator transcribed? Nature (London) New Biol. 237, 227.CrossRefGoogle Scholar
  15. Blattner, F., Dahlberg, J., Boettiger, J., Fiandt, M., and Szybalski, W., 1972, Distance from a promoter mutation to an RNA synthesis startpoint on bacteriophage DNA, Nature (London) New Biol. 237, 232.CrossRefGoogle Scholar
  16. Bode, V., and Kaiser, A., 1965a, Changes in the structure and activity of DNA in a superinfected immune bacterium, J. Mol. Biol. 14, 399.PubMedCrossRefGoogle Scholar
  17. Bode, V., and Kaiser, A., 19656, Repression of the c11 and c111 cistrons of phage lambda in a lysogenic bacterium, Virology 25, 111.PubMedCrossRefGoogle Scholar
  18. Borek, F., and Ryan, A., 1958, The transfer of irradiation-elicited induction in a lysogenic organism, Proc. Nat. Acad. Sci. USA 44, 374.PubMedCrossRefGoogle Scholar
  19. Botstein, D., and Herskowitz, I., 1974, Properties of hybrids between Salmonella phage P 22 and coliphage λ, Nature 251, 584.PubMedCrossRefGoogle Scholar
  20. Botstein, D., Lew, K., Jarvik, V., and Swanson, C., Jr., 1975, Role of antirepressor in the bipartite control of repression and immunity by bacteriophage P 22, J. Mol. Biol. 91, 439.PubMedCrossRefGoogle Scholar
  21. Boulter, J., and Lee, N., 1975, Isolation of specialized transducing bacteriophage lambda carrying genes of the L-arabinose operon of Escherichia coli B/r, J. Bacteriol. 123, 1043.PubMedGoogle Scholar
  22. Boyd, J., 1951, Excessive dose phenomenon in virus infections, Nature ,167, 1061.PubMedCrossRefGoogle Scholar
  23. Brachet, P., and Thomas, R., 1969, Mapping and functional analysis of y and cII mutants, Mutat. Res. 7, 257.PubMedCrossRefGoogle Scholar
  24. Brack, C., and Pirotta, V., 1975, Electron-microscopic study of the repressor of phage, and its interaction with operator DNA, J. Mol. Biol. 96, 139.PubMedCrossRefGoogle Scholar
  25. Brooks, K., 1965, Studies in the physiological genetics of some suppressor-sensitive mutants of bacteriophage X, Virology 26, 489.PubMedCrossRefGoogle Scholar
  26. Brooks, K., and Clark, A., 1967, Behavior of lambda bacteriophage in a recombination-deficient strain of Escherichia coli, J. Virol. 1, 283.PubMedGoogle Scholar
  27. Calef, E., and Licciardello, G., 1960, Recombination experiments on prophage-host relationships, Virology ,12, 81.CrossRefGoogle Scholar
  28. Calef, E., and Neubauer, Z., 1968, Active and inactive states of the cI gene in some λ defective phages, Cold Spring Harbor Symp. Quant. Biol. 33, 765.PubMedCrossRefGoogle Scholar
  29. Calef, E., Avitabile, A., del Giudice, L., Marchelli, C., Menna, T., Neubauer, Z., and Soller, A., 1971, The genetics of the anti-immune phenotype of defective lambda, in ’The Bacteriophage λ (A. D. Hershey, ed.), p. 609, Cold Spring Harbor, New York.Google Scholar
  30. Campbell, A., 1961, Sensitive mutants of bacteriophage A. Virology ,14, 22.PubMedCrossRefGoogle Scholar
  31. Campbell, A., 1962, The episomes, Adv. Genet. 11, 101.CrossRefGoogle Scholar
  32. Campbell, A., 1963, Segregants from lysogenic heterogenotes carrying recombinant lambda prophages. Virology ,20, 344.PubMedCrossRefGoogle Scholar
  33. Campbell, A., 1971, Genetic structure. Chapter 2 inThe Bacteriophage λ (A. D. Hershey, ed.), p. 13, Cold Spring Harbor, New York.Google Scholar
  34. Campbell, A., and del Campillo-Campbell, A., 1963, Mutant of lambda bacteriophage producing a thermolabile endolysin, J. Bacteriol. 85, 1202.PubMedGoogle Scholar
  35. Campbell, A., and Killen, K., 1967, Effect of temperature on prophage attachment and detachment during heteroimmune superinfection, Virology 33, 749.PubMedCrossRefGoogle Scholar
  36. Campbell, A., Adhya, S., and Killen, K., 1969, The concept of prophage, in Ciba Foundation Symposium on Episomes and Plasmids (G. E. W. Wolstenholme and M. O’Connor, eds.), p. 13, J. A. Churchill. London.Google Scholar
  37. Castellazzi, M., George, J., and Buttin, G., 1972a, Prophage induction and cell division in E. coli. I. Further characterization of the thermosensitive mutation tif-1 whose expression mimics the effect of UV irradiation, Mol. Gen. Genet. 119, 153.PubMedCrossRefGoogle Scholar
  38. Castellazzi, M., George, J., and Buttin, G., 1972b, Prophage induction and cell division in E. coli, Mol Gen. Genet. 119, 139.PubMedCrossRefGoogle Scholar
  39. Castellazzi, M., Brachet, P., and Eisen, H., 1972c, Isolation and characterization of deletions in bacteriophage A residing as prophage in E. coli K12, Mol. Gen. Genet. 117, 211–218.PubMedGoogle Scholar
  40. Chadwick, P., Pirotta, V., Steinberg, R., Hopkins, N., and Ptashne, M., 1970, The λ and 434 phage repressors, Cold Spring Harbor Symp. Quant. Biol. 28, 363.Google Scholar
  41. Court, D., Green, L., and Echols, H., 1975, Positive and negative regulation by the cII and cIII gene products of bacteriophage A, Virology 63, 484.PubMedCrossRefGoogle Scholar
  42. Dambly, C., and Couturier, M., 1971, A minor Q-independent pathway for the expression of the late genes in bacteriophage λ, Mol. Gen. Genet. 113, 244.PubMedCrossRefGoogle Scholar
  43. Dambly, C., Couturier, M., and Thomas, R., 1968, Control of development in temperate bacteriophages, J. Mol. Biol. 32, 67.PubMedCrossRefGoogle Scholar
  44. Davidson, N., and Szybalski, W., 1971, Physical and chemical characteristics of Lambda DNA, Chapter 3 in The Bacteriophage λ (A. D. Hershey), p. 45, Cold Spring Harbor, New York.Google Scholar
  45. Davies, R., Dove, W., Inokuchi, H., Lehman, J., and Roehrdanz, R., 1972, Regulation of A prophage excision by the transcriptional state of DNA, Nature (London) New Biol. 238, 43.Google Scholar
  46. Davis, R., and Davidson, N., 1968, Electron-microscope visualization of deletion mutations, Proc. Nat. Acad. Sci. USA 60, 243.PubMedCrossRefGoogle Scholar
  47. Davis, R., and Parkinson, J., 1971, Deletion mutants of bacteriophage lambda. III. Physical structure of attø, J. Mol. Biol. 56, 403.PubMedCrossRefGoogle Scholar
  48. Devoret, R., and George, J., 1967, Induction indirecte du prophage λ par le rayon-nement ultraviolet, Mutat. Res. 4, 713.PubMedCrossRefGoogle Scholar
  49. Dickson, R. C., Abelson, J., Barnes, W. M., and Reznikoff, W. S., 1975, Genetic regulation: the lac control region, Science 187, 27.PubMedCrossRefGoogle Scholar
  50. Dottin, R., Cutler, L., and Pearson, M., 1975, Repression and autogenous stimulation in vitro by bacteriophage lambda repressor, Proc. Nat. Acad. Sci. USA 72, 804.PubMedCrossRefGoogle Scholar
  51. Dove, W., 1966, Action of the lambda chromosome. I. Control of functions late in bacteriophage development, J. Mol. Biol. 19, 187.PubMedCrossRefGoogle Scholar
  52. Dove, W., Hargrove, E., Ohashi, M., Haugli, F., and Guha, A., 1969, Replicator activation in lambda, Jpn J. Genet. 44 Suppl. 1, 11.CrossRefGoogle Scholar
  53. Dove, W. F., and Weigle, J. J., 1965, Intracellular state of the chromosome of bacteriophage lambda. I. The eclipse of infectivity of the bacteriophage DNA, J. Mol. Biol. 12, 620.PubMedCrossRefGoogle Scholar
  54. Drexler, H., 1972, Transduction of Gal+ by coliphage T 1, J. Virol. 9, 280.PubMedGoogle Scholar
  55. Echols, H., 1970, Integrative and excisive recombination by bacteriophage λ: Evidence for an excision-specific recombination protein, J. Mol. Biol. 47, 575.PubMedCrossRefGoogle Scholar
  56. Echols, H., 1972, Developmental pathways for the temperate phage: Lysis vs lysogeny, Annu. Rev. Genet. 6, 157.PubMedCrossRefGoogle Scholar
  57. Echols, H., 1975, Constitutive integrative recombination by bacteriophage λ, Virology 64, 557.PubMedCrossRefGoogle Scholar
  58. Echols, H., and Court, D., 1971, The role of helper phage in gal transduction in The Bacteriophage λ (A. D. Hershey, ed.), p. 701, Cold Spring Harbor, New York.Google Scholar
  59. Echols, H., and Green, L., 1971, Establishment and maintenance of repression by bacteriophage λ: The role of the cI, cII, and cIII proteins, Proc. Nat. Acad. Sci. USA 68, 2190.PubMedCrossRefGoogle Scholar
  60. Echols, H., Gingery, P., and Moore, L., 1968, Integrative recombination function of bacteriophage X: Evidence for a site-specific recombination enzyme, J. Mol. Biol. 34, 251.PubMedCrossRefGoogle Scholar
  61. Echols, H., Green, L., Oppenheim, A. B., Oppenheim, A., and Honigman, A., 1973, The role of the cro gene in bacteriophage λ development, J. Mol. Biol. 80, 203.PubMedCrossRefGoogle Scholar
  62. Echols, H., Chung, S., and Green, L., 1974, Site-specific recombination: Genes and regulation, in Mechanisms in Recombination (R. E. Grell, ed.), p. 69, Plenum Press, New York.CrossRefGoogle Scholar
  63. Echols, H., Green, K., Kudrna, P., and Edlin, G., 1975, Regulation of phage λ development with the growth rate of host cells: A homeostatic mechanism, Virology 66, 344.PubMedCrossRefGoogle Scholar
  64. Eisen, H., Pereira da Silva, L., and Jacob, F., 1968aGenetique cellulaire, C. R. Acad. Sci. 266, 1176.Google Scholar
  65. Eisen, H., Pereira da Silva, L., and Jacob, F., 1968b, The regulation and mechanism of DNA synthesis in bacteriophage lambda, Cold Spring Harbor Symp. Quant. Biol. 33, 755.PubMedCrossRefGoogle Scholar
  66. Eisen, H., Brachet, P., Pereira da Silva, L., and Jacob, F., 1970, Regulation of repressor expression in λ, Proc. Nat. Acad. Sci. USA 66, 855.PubMedCrossRefGoogle Scholar
  67. Fiandt, M., Hradecna, Z., Lozeron, H., and Szybalski, W., 1971, Electron micrographic mapping of deletions, insertions, inversions, and homologies in the DNAs of coliphages lambda and phi 80, in The Bacteriophage λ (A. D. Hershey, ed.), p. 329, Cold Spring Harbor, New York.Google Scholar
  68. Franklin, N., 1971, The N operon of lambda: Extent and regulation as observed in fusions to the tryptophan operon of Escherichia coli, in The Bacteriophage λ (A. D. Hershey, ed.), p. 621, Cold Spring Harbor, New York.Google Scholar
  69. Franklin, N., Dove, W., and Yanofsky, C., 1965, The linear insertion of a prophage into the chromosome of E. coli shown by deletion mapping, Biochem. Biophys. Res. Commun. 18, 910.CrossRefGoogle Scholar
  70. Freifelder, D., and Levine, 1973, Requirement for transcription in the neighborhood of the phage attachment region for lysogenization of Escherichia coli by bacteriophage λ, J. Mol. Biol. 74, 729.PubMedCrossRefGoogle Scholar
  71. Freifelder, D., and Kirschner, I., 1971, A phage endonuclease controlled by genes O and P, Virology 44 ,223.PubMedCrossRefGoogle Scholar
  72. Freifelder, D., and Meselson, M., 1970. Topological relationship of prophage X to the bacterial chromosome in lysogenic cells, Proc. Nat. Acad. Sci. USA 65, 200.PubMedCrossRefGoogle Scholar
  73. Freifelder, D., Folkmanis, A., and Kirschner, I., 1971, Studies on Escherichia coli sex factors; Evidence that covalent circles exist within cells and the general problem of isolation of covalent circles, J. Bacteriol. 105, 722.PubMedGoogle Scholar
  74. Freifelder, D.. Kirschner, I., Goldstein, R.. and Baran, N., 1973, Physical study of prophage excision and curing of X prophage from lysogenic Escherichia coli, J. Mol. Biol. 74, 703.PubMedCrossRefGoogle Scholar
  75. Fuerst, C., and Siminovitch, L.. 1965. Characterization of an unusual defective lysogenic strain of Escherichia coli K12(λ), Virology 27, 449.PubMedCrossRefGoogle Scholar
  76. Galland, P., Bassi, P., and Calef, E., 1973, On the mode of antirepressor action in antiimmune cells, Mol. Gen. Genet. 125, 231.PubMedCrossRefGoogle Scholar
  77. Geiduschek, E. P., and Grau, D., 1970, T 4 anti-messenger, Lepetit Colloquium on Biology and Medicine, Volume 1, p. 190.Google Scholar
  78. Gellert, M., 1967, Formation of covalent circles of lambda DNA by E. coli extracts, Proc. Nat. Acad. Sci. USA 57, 148.PubMedCrossRefGoogle Scholar
  79. George, J., 1966, Correlation entre la disparition de l’induction indirecte du prophage λ et la restriction du DNA transmis à la bactérie receptrice inductible dans un croisement F+ × F-hétérospecifique, C. R. Acad. Sci. 262, 1805.Google Scholar
  80. Gesteland, R., and Kahn, C., 1972, Synthesis of bacteriophage X proteins in vitro, Nature (London) New Biol. 240. 3.CrossRefGoogle Scholar
  81. Gilbert, W., and Maxam, A., 1973, The nucleotide sequence of the lac operator, Proc. Nat. Acad. Sci. USA 70, 3581.PubMedCrossRefGoogle Scholar
  82. Gingery, R., and Echols, H., 1967, Mutants of bacteriophage λ unable to integrate into the host chromosome, Proc. Nat. Acad. Sci. USA 58, 1507.PubMedCrossRefGoogle Scholar
  83. Goldthwait, D., and Jacob, F., 1964, Genetique biochimique. Sur le mécanisme de l’induction du développement du prophage chez les bactéries lysogènes, C. R. Acad. Sci. 259, 661.Google Scholar
  84. Gottesman, S., and Gottesman, M. E., 1975a, Elements involved in site-specific recombination in bacteriophage lambda, J. Mol. Biol. 91, 489.PubMedCrossRefGoogle Scholar
  85. Gottesman, S., and Gottesman, M. E., 1975b, Excision of prophage λ in a cell-free system, Proc. Nat. Acad. Sci. USA 72: 2188.PubMedCrossRefGoogle Scholar
  86. Gottesman, M. E., and Weisberg, R., 1971, Prophage insertion and excision. Chapter 6 in The Bacteriophage λ (A. D. Hershey, ed.), Cold Spring Harbor, New York, p. 113.Google Scholar
  87. Gottesman, M. E., and Yarmolinsky, M., 1968, Integration-negative mutants of bacteriophage lambda, J. Mol. Biol. 31, 487.PubMedCrossRefGoogle Scholar
  88. Gough, M., and Tokuno, S., 1975, Further structural and functional analogies between the repressor regions of phages P 22 and λ, Mol. Gen. Genet. 138, 71.PubMedCrossRefGoogle Scholar
  89. Green, M., 1966, Inactivation of the prophage lambda repressor without induction, J. Mol. Biol. 16, 134.PubMedCrossRefGoogle Scholar
  90. Greenblatt, J., 1973, Regulation of the expression of the N gene of bacteriophage lambda, Proc. Nal. Acad. Sci. USA 70, 421.CrossRefGoogle Scholar
  91. Grodzicker, T., Arditti, R., and Eisen, H., 1972, Establishment of repression by lambdoid phage in catabolite activator protein and adenylate cyclase mutants of Escherichia coli, Proc. Nat. Acad. Sci. USA 69, 366.PubMedCrossRefGoogle Scholar
  92. Guarneros, G., and Echols, H., 1970, New mutants of bacteriophage λ with a specific defect in excision from the host chromosome, J. Mol. Biol. 47, 565.PubMedCrossRefGoogle Scholar
  93. Guarneros, G., and Echols, H., 1973, Thermal asymmetry of site-specific recombination by bacteriophage λ, Virology 52, 30.PubMedCrossRefGoogle Scholar
  94. Guerrini, F., 1969, On the asymmetry of λ integration sites, J. Mol. Biol. 46, 523.PubMedCrossRefGoogle Scholar
  95. Gussin, G., and Peterson, V., 1972, Isolation and properties of rex-mutants of bacteriophage lambda, J. Virology 10, 760.PubMedGoogle Scholar
  96. Gussin, G., Yen, K., and Reichardt, L., 1975, Repressor synthesis in vivo after infection of E. coli by a prm -mutant of bacteriophage λ, Virology 63, 273.PubMedCrossRefGoogle Scholar
  97. Hayes, S., and Szybalski, W., 1973, Control of short leftward transcripts from the immunity and ori regions in induced coliphage lambda, Mol. Gen. Genet. 126, 275.PubMedCrossRefGoogle Scholar
  98. Heinemann, S., and Spiegelman, W., 1970, Control of transcription of the repressor gene in bacteriophage lambda, Proc. Nat. Acad. Sci. USA 67, 1122.PubMedCrossRefGoogle Scholar
  99. Hershey, A. D., and Burgi, E., 1965, Complementary structure of interacting sites at the ends of lambda DNA molecules, Proc. Nat. Acad. Sci. USA 53, 325.PubMedCrossRefGoogle Scholar
  100. Hershey, A. D., Burgi, E., and Ingraham, L., 1963, Cohesion of DNA molecules isolated from phage lambda, Proc. Nat. Acad. Sci. 49, 748.PubMedCrossRefGoogle Scholar
  101. Herskowitz, I., 1973, Control of gene expression in bacteriophage lambda, Annu. Rev. Gen. 7, 289.CrossRefGoogle Scholar
  102. Herskowitz, I., and Signer, E., 1970, A site essential for expression of all late genes in bacteriophage λ, J. Mol. Biol. 47, 545.PubMedCrossRefGoogle Scholar
  103. Hertman, I., and Luria, S., 1967, Transduction studies on the role of the rec+ gene in the ultraviolet induction of prophage, Biol. 23, 117.Google Scholar
  104. Honigman, A., Oppenheim, A., and Oppenheim, A. B., 1975, A pleiotropic regulatory mutation in X bacteriophage, Mol. Gen. Genet. 138, 85.PubMedCrossRefGoogle Scholar
  105. Hopkins, N., and Ptashne, M., 1971, Genetics of Virulence, in The Bacteriophage λ (A. D. Hershey, ed.), p. 571, Cold Spring Harbor, New York.Google Scholar
  106. Horiuchi, T., and Inokuchi, H., 1967, Temperature-sensitive regulation system of prophage lambda induction, J. Mol. Biol. 23, 217.PubMedCrossRefGoogle Scholar
  107. Howard, B., 1967, Phage lambda mutants deficient in rII exclusion, Science 158, 1588.PubMedCrossRefGoogle Scholar
  108. Hradecna, Z., and Szybalski, W., 1969, Electron micrographic maps of deletions and substitutions in the genomes of transducing coliphages λdg and λbio, Virology 38, 473.PubMedCrossRefGoogle Scholar
  109. Inokuchi, H., Dove, W. E., and Freifelder, D., 1973, Physical studies of RNA involvement in bacteriophage λ DNA replication and prophage excision, J. Mol. Biol. 74, 721.PubMedCrossRefGoogle Scholar
  110. Isaacs, L., Echols, H., and Sly, W., 1965, Control of lambda messenger RNA by the C1-immunity region, J. Mol. Biol. 13, 963.CrossRefGoogle Scholar
  111. Jacob, F., and Campbell, A., 1959, Sur le système de répression assurant l’immunité chez les bactéries lysogènes, C. R. Acad. Sci. 248, 3219.Google Scholar
  112. Jacob, F., and Fuerst, C., 1958, The mechanism of lysis by phage studies with defective lysogenic bacteria, J. Gen. Microbiol. 18, 518.PubMedGoogle Scholar
  113. Jacob, F., and Monod, J., 1961, Genetic regulatory mechanisms in the synthesis of proteins, J. Mol. Biol. 3, 318.PubMedCrossRefGoogle Scholar
  114. Jacob, F., and Wollman, E., 1954, Etude génétique d’un bactériophage temperé d’Escherichia coli. I. Le systéme génétique du bactériophage λ, Ann. Inst. Pasteur 87, 653.Google Scholar
  115. Jacob, F., and Wollman, E., 1965a, Recherches sur les processus de conjugaison et de recombinaison chez Escherichia coli I. L’induction par conjugaison ou induction zygotique, Ann. Inst. Pasteur 91, 486.Google Scholar
  116. Jacob, F., and Wollman, E., 1956b, Recherches sur les bacteries lysogenes defectives. I. Déterminisme génétique de la morphogenése chez un bactériophage tempére, Ann. Inst. Pasteur 90 ,282.Google Scholar
  117. Jacob, F., Fuerst, C., and Wollman, E., 1957, Recherches sur les bactéries lysogènes defectives. II. Les types physiologiques liés aux mutations du prophage, Ann. Inst. Pasteur 93, 724.Google Scholar
  118. Jacob, F., Sussman, R., and Monod. J., 1962, Sur la nature du répresseur assurant l’immunité des bactéries lysogènes, C. R. Acad. Sci. 254, 4214.Google Scholar
  119. Kaiser. A. D., 1957. Mutations in a temperate bacteriophage affecting its ability to lysogenize Escherichia coli, Virology 3, 42.PubMedCrossRefGoogle Scholar
  120. Kaiser, A. D., and Jacob, F., 1957, Recombination between related temperature bacteriophages and the genetic control of immunity and prophage localization. Virology 4, 509.PubMedCrossRefGoogle Scholar
  121. Kaiser, A. D., and Masuda, T., 1970, Evidence for a prophage excision gene in X, J. Mol. Biol. 47, 557.PubMedCrossRefGoogle Scholar
  122. Kaiser, A. D., and Masuda, T., 1972, In vitro assembly of bacteriophage lambda heads, Proc. Nat. Acad. Sci. USA 70, 260.CrossRefGoogle Scholar
  123. Kaiser, A., and Wu, P., 1968, Structure and function of DNA cohesive ends, Cold Spring Harbor Symp. Quant. Biol. 33, 729.PubMedCrossRefGoogle Scholar
  124. Kellenberger, G., Zichichi, M. L., and Weigle, J., 1961, A mutation affecting the DNA content of bacteriophage lambda and its lysogenizing properties, J. Mol. Biol. 3, 399.PubMedCrossRefGoogle Scholar
  125. Korn, D., and Weissbach, A., 1964, The effect of lysogenic induction on the deoxyribonucleases of Escherichia coli K12 (λ). II. The kinetics of formation of a new exonuclease and its relation to phage development Virology 22, 91.Google Scholar
  126. Kourilsky, O., 1971, Lysogenization by bacteriophage lambda and the regulation of lambda repressor synthesis. Virology 45, 853.PubMedCrossRefGoogle Scholar
  127. Kourilsky, P., 1973, Lysogenization by bacteriophage lambda. I. Multiple infection and the lysogenic response, Mol. Gen. Genet. 122, 183.PubMedCrossRefGoogle Scholar
  128. Kourilsky, P., Marcaud, L., Sheldrick, P., Luzzati, D., and Gros, F., 1968, Studies on the messenger RNA of bacteriophage λ. I. Various species synthesized early after induction of the prophage, Proc. Nat. Acad. Sci. USA 61, 1013.PubMedCrossRefGoogle Scholar
  129. Kourilsky, P., Bourguignon, M., Bouquet, M., and Gros, F., 1970, Early transcription controls after induction of prophage λ, Cold Spring Harbor Symp. Quant. Biol. 35, 305.CrossRefGoogle Scholar
  130. Kourilsky, P., Bourguignon, M., and Gros, F., 1971, Kinetics of viral transcription after induction of prophage, inThe Bacteriophage λ (A. D. Hershey, ed.), p. 647, Cold Spring Harbor, New York.Google Scholar
  131. Kumar, S., Calef, E., and Szybalski, W., 1970, Regulation of the transcription of Escherichia coli phage λ by its early genes N and tof. Cold Spring Harbor Symp. Quant. Biol. 35, 331.CrossRefGoogle Scholar
  132. Lehman, J., 1974, λ Site-specific recombination: Local transcription and an inhibitor specified by the b2 region, Mol. Gen. Genet. 130, 333.PubMedCrossRefGoogle Scholar
  133. Levine, M., and Schott, C., 1971, Mutations of phage P 22 affecting phage DNA synthesis and lysogenization, J. Mol. Biol. 62, 53.PubMedCrossRefGoogle Scholar
  134. Levine, M., Truesdell, S., Ramakrishnan, T., and Bronson, M., 1975, Dual control of lysogeny by bacteriophage P 22: An antirepressor locus and its controlling elements, J. Mol. Biol. 91,421.PubMedCrossRefGoogle Scholar
  135. Lieb, M., 1953, The establishment of lysogenicity in Escherichia coli, J. Bacteriol. 65, 642.PubMedGoogle Scholar
  136. Lieb, M., 1966, Studies of heat-inducible λ phage. I. Order of genetic sites and properties of mutant prophages, J. Mol. Biol. 16, 149.PubMedCrossRefGoogle Scholar
  137. Liedke-Kulke, M., and Kaiser, A. D., 1967, The c-region of coliphage 21, Virology 32, 475.PubMedCrossRefGoogle Scholar
  138. Little, J. W., and Gottesman, M., 1971, Defective lambda particles whose DNA carries only a single cohesive end, in The Bacteriophage λ (A. D. Hershey, ed.), p. 371, Cold Spring Harbor, New York.Google Scholar
  139. Luzzati, D., 1970, Regulation of λ exonuclease synthesis: Role of the N gene product and λ repressor, J. Mol. Biol. 49, 515.PubMedCrossRefGoogle Scholar
  140. Maniatis, T., and Ptashne, M., 1973a, Structure of the λ operators, Nature (London) 246, 133.CrossRefGoogle Scholar
  141. Maniatis, T., and Ptashne, M., 1973b, Multiple repressor binding at the operators in bacteriophage λ, Proc. Nat. Acad. Sci. USA 70, 1531.PubMedCrossRefGoogle Scholar
  142. Maniatis, T., Ptashne, M., and Maurer, R., 1973, Control elements in the DNA of bacteriophage X, Cold Spring Harbor Symp. Quant. Biol. 38, 857.CrossRefGoogle Scholar
  143. Maniatis, T., Ptashne, M., Barrell, B., and Donelson, J., 1974, Sequence of a repressor-binding site in the DNA of bacteriophage λ, Nature (London) 250, 394.CrossRefGoogle Scholar
  144. Maniatis, T., Jeffrey, A., and Kleid, D., 1975a, Nucleotide sequence of the rightward operator of phage λ, Proc. Nat. Acad. Sci. 72, 1184.PubMedCrossRefGoogle Scholar
  145. Maniatis, T., Ptashne, M., Backman, K., Kleid, D., Flashman, S., Jeffrey A., and Maurer, R., 1975b, Recognition sequences of repressor and polymerase in the operators of bacteriophage lambda, Cell 5, 109.PubMedCrossRefGoogle Scholar
  146. Maurer, R., Maniatis, T., and Ptashne, M., 1974, Promotors are in the operators in phage lambda, Nature (London) 249, 221.CrossRefGoogle Scholar
  147. McMacken, R., Mantei, N., Butler, B., Joyner, A., and Echols, H., 1970, Effect of mutations in the cII and cIII genes of bacteriophage λ on macromolecular synthesis in infected cells, J. Mol. Biol. 49, 639–655.PubMedCrossRefGoogle Scholar
  148. Menninger, J., Wright, M., Menninger, L., and Meselson, M., 1968, Attachment and detachment of bacteriophage DNA in lysogenization and induction, J. Mol. Biol. 32, 631.PubMedCrossRefGoogle Scholar
  149. Meyer, B., Kleid, D., and Ptashne, M., 1975, λ Repressor turns off transcription of its own gene, Proc. Nat. Acad. Sci. USA 72, 4785.PubMedCrossRefGoogle Scholar
  150. Naono, S., and Gros, F., 1966, On the mechanism of transcription of the lambda genome during induction of lysogenic bacteria, Cold Spring Harbor Symp. Quant. Biol. 31, 363.PubMedCrossRefGoogle Scholar
  151. Nash, H., 1974a, λ att B-att P, a λ derivative containing both sites involved in integrative recombination, Virology 57, 207.PubMedCrossRefGoogle Scholar
  152. Nash, H. A., 1974b, Purification of bacteriophage λ int protein, Nature (London) 247, 543.CrossRefGoogle Scholar
  153. Nash, H., 1975a, Integrative recombination in bacteriophage lambda: Analysis of recombinant DNA, J. Mol. Biol. 91, 501.PubMedCrossRefGoogle Scholar
  154. Nash, H., 1975b, Integrative recombination of bacteriophage lambda DNA in vitro, Proc. Nat. Acad. Sci. USA 72, 1072.PubMedCrossRefGoogle Scholar
  155. Nash, H. A., and Robertson, C. A., 1971, On the mechanism of int-promoted recombination, Virology 44, 446.PubMedCrossRefGoogle Scholar
  156. Neubauer, Z., and Calef, E., 1970, Immunity phase-shift in defective lysogens: Non-mutational hereditary change of early regulation of λ prophage, J. Mol. Biol. 51, 1.PubMedCrossRefGoogle Scholar
  157. Ordal, G., 1971, Supervirulent mutants and the structure of operator and promoter, in The Bacteriophage λ (A. D. Hershey, ed.), p. 565, Cold Spring Harbor, New York.Google Scholar
  158. Ordal, G., and Kaiser, A. D., 1973, Mutations in the right operator of bacteriophage lambda: Evidence for operator-promoter interpenetration, J. Mol. Biol. 79, 709.PubMedCrossRefGoogle Scholar
  159. Parkinson, J. S., and Huskey, R. J., 1971, Deletion mutants of bacteriophage lambda. 1. Isolation and initial characterization, J. Mol. Biol. 56, 369.PubMedCrossRefGoogle Scholar
  160. Pereira da Silva, L., and Jacob, F., 1968, Etude génétique d’une mutation modifiant la sensibilité à l’immunité chez le bacteriophage lambda, Ann. Inst. Pasteur (Paris) 115,145.Google Scholar
  161. Pero, J., 1970, Location of the phage λ gene responsible for turning off λ-exonuclease synthesis, Virology 40, 65.PubMedCrossRefGoogle Scholar
  162. Pirotta, V., 1975, Sequence of the Or operator of phage A, Nature (London) 254, 114.CrossRefGoogle Scholar
  163. Pirotta, V., and Ptashne. M., 1969, Isolation of the 434 phage repressor, Nature (London)222, 541.CrossRefGoogle Scholar
  164. Pirotta, V., Chadwick, P., and Ptashne, M., 1970, Active form of two coliphage repressors, Nature (London) 227, 41.CrossRefGoogle Scholar
  165. Pirotta. V., Ptashne, M., Chadwick, P., and Steinberg, R., 1971, Isolation of repressors, in ’’Procedures in Nucleic Acid Research (G. L. Cantoni and R. D. Davies, ed.), Harper and Row, New York and London.Google Scholar
  166. Ptashne, M., 1967a, Isolation of the λ phage repressor, Proc. Nat. Acad. Sci. USA 57, 306.PubMedCrossRefGoogle Scholar
  167. Ptashne, M., 1967b, The λ phage repressor binds specifically to λ DNA, Nature (London) 214, 232.CrossRefGoogle Scholar
  168. Ptashne, M., 1971, Repressor and its action, Chapter 11 in The Bacteriophage λ (A. D. Hershey), p. 221, Cold Spring Harbor, New York.Google Scholar
  169. Ptashne, M., and Hopkins, N., 1968, The operators controlled by the λ phage repressor, Proc. Nat. Acad. Sci. 60, 1282.PubMedCrossRefGoogle Scholar
  170. Radding, C., 1964a, Nuclease activity in defective lysogens of phage λ, Biochem. Biophys. Res. Commun. 15, 8.PubMedCrossRefGoogle Scholar
  171. Radding, C., 1964b, Nuclease activity in defective lysogens of phage λ. 11. A hyperactive mutant, Proc. Nat. Acad. Sci. USA 52, 965.PubMedCrossRefGoogle Scholar
  172. Radman, M., 1975, SOS Repair Hypothesis: Phenomenology of an inducible DNA repair which is accompanied by mutagenesis, in Molecular Mechanisms for the Repair of DNA’ (P. C. Hanawalt and R. B. Setlow), p. 355, Plenum Press, New York.CrossRefGoogle Scholar
  173. Reichardt, L., 1975a, Control of bacteriophage lambda repressor synthesis: Regulation of the maintenance pathway by the cro and cI products, J. Mol. Biol. 93, 289.PubMedCrossRefGoogle Scholar
  174. Reichardt, L., 1975b, Control of bacteriophage lambda repressor synthesis after phage infection: The role of the N, cII, cIII, and cro products, J. Mol. Biol. 93, 267.PubMedCrossRefGoogle Scholar
  175. Reichardt, L., and Kaiser, A. D., 1971, Control of λ repressor synthesis, Proc. Nat. Acad. Sci. USA 68, 2185.PubMedCrossRefGoogle Scholar
  176. Riggs, A., and Bourgeois, S., 1968, On the assay, isolation and characterization of the lac repressor, J. Mol. Biol. 34, 361.PubMedCrossRefGoogle Scholar
  177. Roberts, J., 1969, Termination factor for RNA synthesis. Nature (London) 224, 1168.CrossRefGoogle Scholar
  178. Roberts, J., 1975, Transcription termination and late control in phage lambda, Proc. Nat. Acad. Sci. USA ,72, 3300.PubMedCrossRefGoogle Scholar
  179. Roberts, J., and Roberts, C., 1975, Proteolytic cleavage of bacteriophage lambda repressor in induction, Proc. Nat. Acad. Sci. 72, 147.PubMedCrossRefGoogle Scholar
  180. Rosner, J. L., 1967, Transfer of materials in bacterial conjugation: Their nature and role in indirect lysogenic induction, Ph.D. dissertion, Yale University.Google Scholar
  181. Rosner, J., Adelberg, E., and Yarmolinsky, M., 1967, An upper limit on galactosi-dase transfer in bacterial conjugation, J. Bacteriol. 94, 1623.PubMedGoogle Scholar
  182. Rosner, J. L., Kass, L., and Yarmolinsky, M., 1968, Parallel behavior of F and P 1 in causing indirect induction of lysogenic bacteria, Cold Spring Harbor Symp. Quant. Biol. 33, 785.PubMedCrossRefGoogle Scholar
  183. Rothman, J. L., 1965, Transduction studies on the relation between prophage and host chromosome, J. Mol. Biol. 12, 892.PubMedCrossRefGoogle Scholar
  184. Sharp, P. A., Hsu, M., and Davidson, N., 1972, Note on the structure of prophage X, J. Mol. Biol. 71, 499.PubMedCrossRefGoogle Scholar
  185. Shimada, K., and Campbell, A., 1974aInt-constitutive mutants of bacteriophage lambda, Proc. Nat. Acad. Sci. USA 71, 237.PubMedCrossRefGoogle Scholar
  186. Shimada, K., and Campbell, A., 19746, Lysogenization and curing by int-constitutive mutants of phage X, Virology 60, 157.PubMedCrossRefGoogle Scholar
  187. Shimada, K., Weisberg, R. A., and Gottesman, M. E., 1972, Prophage lambda at unusual chromosomal locations. I. Location of the secondary attachment sites and the properties of the lysogens, J. Mol. Biol. 63, 483.PubMedCrossRefGoogle Scholar
  188. Shimada, K., Weisberg, R. A., and Gottesman, M. E., 1973, Prophage lambda at unusual chromosomal locations. II. Mutations induced by bacteriophage lambda in Escherichia coli K 12, J. Mol. Biol. 80, 297.PubMedCrossRefGoogle Scholar
  189. Shimada, K., Weisberg, R. A., and Gottesman, M. E., 1975, Prophage lambda at unusual chromosomal locations. III. The components of the secondary attachment sites, J. Mol. Biol. 93, 415.PubMedCrossRefGoogle Scholar
  190. Shulman, M., and Gottesman, M., 1971, Lambda att2: A transducing phage capable of intramolecular int-xis promoted recombination, in The Bacteriophage λ (A. D. Hershey, ed.), p. 477, Cold Spring Harbor, New York.Google Scholar
  191. Shulman, M., and Gottesman, M. E., 1973, Attachment site mutants of bacteriophage lambda, J. Mol. Biol. 81, 461.PubMedCrossRefGoogle Scholar
  192. Signer, E., 1966, Interaction of prophages at the att80 site with the chromosome of Escherichia coli, J. Mol. Biol. 15, 243.PubMedCrossRefGoogle Scholar
  193. Signer, E., 1969, Plasmid formation: A new mode of lysogeny by phage λ, Nature (London) ,223, 158.CrossRefGoogle Scholar
  194. Signer, E. R., and Beckwith, J. R., 1966, Transposition of the lac region of Escherichia coli ,III. The mechanism of attachment of bacteriophage ø80 to the bacterial chromosome, J. Mol. Biol. 22, 33.CrossRefGoogle Scholar
  195. Signer, E. R., Weil, J., and Kimball, P. C. 1969, Recombination in bacteriophage X. III. Studies on the nature of the prophage attachment region, J. Mol. Biol. 46, 543.PubMedCrossRefGoogle Scholar
  196. Silver, S., 1963, The transfer of material during mating in Escherichia coli. Transfer of DNA and upper limits on the transfer of RNA and protein, J. Mol. Biol. 6, 349.PubMedCrossRefGoogle Scholar
  197. Sly, W., Rabideau, K., and Kolber, A., 1971, The mechanisms of lambda virulence. II. Regulatory mutations in classical virulence, inThe Bacteriophage λ (A. D. Hershey), p. 575, Cold Spring Harbor, New York.Google Scholar
  198. Smith, H. O., and Levine, M., 1964, Two sequential repressions of DNA synthesis in the establishment of lysogeny by phage P 22 and its mutants, Proc. Nat. Acad. Sci. USA 52, 356.PubMedCrossRefGoogle Scholar
  199. Smith, H. O., and Levine, M., 1967, A phage P 22 gene controlling integration of prophage, Virology 31, 207.PubMedCrossRefGoogle Scholar
  200. Spiegelman, W. G., Reichardt, L., Yaniv, M., Heineman, S., Kaiser, A. D., and Eisen, H., 1972, Bidirectional transcription and the regulation of phage λ repressor synthesis, Proc. Nat. Acad. Sci. USA 69, 3156.PubMedCrossRefGoogle Scholar
  201. Stahl, M. M., and Stahl, F. W., 1971, DNA synthesis associated with recombination. 1. Recombination in a DNA-negative host, in The Bacteriophage λ (A. D. Hershey), p. 431, Cold Spring Harbor, New York.Google Scholar
  202. Steinberg, R., and Ptashne, M., 1971, In vitro repression of RNA synthesis by purified λ phage repressor, Nature (London) New Biol. 230, 76.Google Scholar
  203. Stent, G. S., 1971, Molecular Genetics, W. H. Freeman and Co., San Francisco, California.Google Scholar
  204. Sussman, R., and Jacob. F., 1962, Génétique physiologique. Sur le mécanisme de l’in-duction du développement du prophage chez les bactéries lysogènes, C. R. Acad. Sci. 254, 1517.Google Scholar
  205. Syvanen. M., 1974, In vitro genetic recombination of bacteriophage λ, Proc. Nat. Acad. Sci. USA 71, 2496.PubMedCrossRefGoogle Scholar
  206. Szybalski, E., and Szybalski, W., 1974, Physical mapping of the att-N region of coliphage lambda: Apparent oversaturation of coding capacity in the gam-ral segment. Biochimie 56, 1497.PubMedCrossRefGoogle Scholar
  207. Taylor, K., Hradecna, Z., and Szybalski, W., 1967, Asymmetric distribution of the transcribing regions on the complementary strands of coliphage λ DNA, Proc. Nat. Acad. Sci. USA 57, 1618.PubMedCrossRefGoogle Scholar
  208. Thirion, J., and Hofnung, M., 1972, On some genetic aspects of phage X resistance in E. coli K12, Genetics 71,207.PubMedGoogle Scholar
  209. Thomas. R., 1966, Control of development in temperate bacteriophages, I. Induction of prophage genes following heteroimmune superinfection, J. Mol. Biol. 22, 79.CrossRefGoogle Scholar
  210. Thomas, R., 1970, Control of development in temperate bacteriophages. III. Which prophage genes are and which are not trans-activable in the presence of immunity? J. Mol. Biol. 49, 393.PubMedCrossRefGoogle Scholar
  211. Thomas, R., 1971, Control Circuits, Chapter 10 in The Bacteriophage λ (A. D. Hershey), pp. 211, Cold Spring Harbor, New York.Google Scholar
  212. Thomas, R., and Bertani, L. F., 1964, On the control of the replication of temperate bacteriophages superinfecting immune hosts, Virology 24, 241.PubMedCrossRefGoogle Scholar
  213. Thomas, R., and Lambert, 1962, On the occurrence of bacterial mutations permitting lysogenization by clear variants of temperate bacteriophages, J. Mol. Biol. 5, 373.PubMedCrossRefGoogle Scholar
  214. Tomizawa, J., and Ogawa, T., 1967, Effect of ultraviolet irradiation on bacteriophage lambda immunity, J. Mol. Biol. 23, 247.PubMedCrossRefGoogle Scholar
  215. Tomizawa, J., and Ogawa, T., 1968, Replication of phage lambda DNA, Cold Spring Harbor Symp. Quant. Biol. 33, 533.PubMedCrossRefGoogle Scholar
  216. Walz, A., and Pirotta, J., 1975, Sequence of the PR promoter of phage X, Nature 254, 118.PubMedCrossRefGoogle Scholar
  217. Weil, J., and Signer, E. R., 1968, Recombination in bacteriophage λ. II. Site-specific recombination promoted by the integration system, J. Mol. Biol. 34, 273.PubMedCrossRefGoogle Scholar
  218. Weisberg, R. A., 1970, Requirements for curing of λ lysogens, Virology 41, 195.PubMedCrossRefGoogle Scholar
  219. Weisberg, R., and Gallant, J., 1967, Dual function of the λ prophage repressor, J. Mol. Biol. 25, 537.PubMedCrossRefGoogle Scholar
  220. Weisberg, R., and Gottesman, M. E., 1969, The integration and excision defect of bacteriophage λ dg, J. Mol. Biol. 46, 565.PubMedCrossRefGoogle Scholar
  221. Weisberg, R. A., and Gottesman, M. E., 1971, The stability of int and xis functions, in The Bacteriophage λ (A. D. Hershey, ed.), p. 489, Cold Spring Harbor, New York.Google Scholar
  222. Westmoreland, B., Szybalski, W., and Ris, H., 1969, Mapping of deletions and substitutions in heteroduplex DNA molecules of bacteriophage lambda by electron microscopy, Science 163, 1343.PubMedCrossRefGoogle Scholar
  223. Witkin, E., 1967, The radiation sensitivity of Escherichia coli B: A hypothesis relating filament formation and prophage induction, Proc. Nat. Acad. Sci. USA 57, 1275.PubMedCrossRefGoogle Scholar
  224. Witkin, E., and George, D., 1973, Ultraviolet mutagenesis in polA and uvrA polA derivatives of Escherichia coli B/r: Evidence for an inducible error-prone repair system, Genetics 73, (Supplement), p. 91.PubMedGoogle Scholar
  225. Wu, A., Ghosh, S., and Echols, H., 1972a, Repression by the cI protein of phage λ: Interaction with RNA polymerase, J. Mol. Biol. 67, 423.PubMedCrossRefGoogle Scholar
  226. Wu, A., Ghosh, S., Echols, H., and Spiegelman, W. S., 1972b, Repression by the cI protein of phage λ: In vitro inhibition of RNA synthesis, J. Mol. Biol. 67, 407.PubMedCrossRefGoogle Scholar
  227. Yarmolinsky, M. B., 1971, Modes of prophage insertion and excision, in Advances in the Biosciences, Volume 8 (Workshop on mechanism and prospects of genetic exchange), p. 31, Pergamon Press, Berlin.Google Scholar
  228. Yen, K., and Gussin, G., 1973, Genetic characterization of a prm-mutant of bacteriophage λ, Virology 56, 300.PubMedCrossRefGoogle Scholar
  229. Young, E. T., II, and Sinsheimer, R. L., 1964, Novel intracellular forms of lambda DNA, J. Mol. Biol. 10, 562.PubMedCrossRefGoogle Scholar
  230. Zichichi, M., and Kellenberger, G., 1963, Two distinct functions in the lysogenization process: The repression of phage multiplication and the incorporation of the prophage in the bacterial genome, Virology 19, 450.PubMedCrossRefGoogle Scholar
  231. Zissler, J., 1967, Integration-negative (int) mutants of phage X, Virology 31, 189.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • R. A. Weisberg
    • 1
  • S. Gottesman
    • 2
  • M. E. Gottesman
    • 3
  1. 1.Laboratory of Molecular Genetics, National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUSA
  2. 2.Department of BiologyMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Laboratory of Molecular Biology, National Cancer InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations