Advertisement

The Isometric Single-Stranded DNA Phages

  • David T. Denhardt

Abstract

The subjects of this chapter have an isometric capsid with icosahedral symmetry enclosing a single-stranded DNA genome. The RNA bacteriophages appear to have a similar structure. Some eukaryotic viruses, but no phages that I know of, contain double-stranded DNA enclosed in an isometric capsid, sans tail. Isometric structures can be constructed of subunits arranged with cubic symmetry—either tetrahedral, octahedral, or icosahedral. Each of these symmetries requires a set of identical subunits—12, 24, and 60, respectively— arranged on the surface of a sphere. An attribute of icosahedral symmetry is that a subunit of a fixed size can enclose a larger volume than can be enclosed by using either of the other two point group symmetries (Caspar and Klug, 1962), and it is this kind of symmetry, or derivatives thereof, that seems to be used generally in virus construction, for example in the heads of the tailed phages.

Keywords

Complementary Strand Replicative Form Amber Mutant Branch Migration Parental Strand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Air, G. M., Blackburn, E. H., Sanger, F., and Coulson, A. R., 1975, The nucleotide and amino acid sequences of the N (5’) terminal region of gene G of bacteriophage øX174, J. Mol. Biol. 96:703.PubMedGoogle Scholar
  2. Axelrod, N., 1976a, In vitro transcription of øX174: Selective initiation with oligonucleotides, J. Mol. Biol. (in press).Google Scholar
  3. Axelrod, N., 1976b, In vitro transcription of øX174: Analysis with restriction enzymes, J. Mol. Biol. (in press).Google Scholar
  4. Baas, P. D., and Jansz, H. S., 1972a, Asymmetric information transfer during øX174 DNA replication, J. Mol. Biol. 63:557.PubMedGoogle Scholar
  5. Baas, P. D., and Jansz, H. S., 1972b, øX174 replicative form DNA replication, origin and direction, J. Mol. Biol. 63:569.PubMedGoogle Scholar
  6. Baas, P. D., Jansz, H. S., and Sinsheimer, R. L., 1976, øX174 DNA synthesis in a replication-deficient host: Determination of the origin of øX DNA replication, J. Mol. Biol. 102:633.PubMedGoogle Scholar
  7. Bachmann, B. J., Low, K. B., and Taylor, A. L., 1976, Recalibrated linkage map of Escherichia coli K-12, Bacteriol. Rev. 40:116.PubMedGoogle Scholar
  8. Bachrach, U., Fischer, R., and Klein, I., 1975, Occurrence of polyamines in coliphages T5, øX174, and in phage-infected bacteria, J. Gen. Virol. 26:287.PubMedGoogle Scholar
  9. Baker, R., and Tessman, I., 1967, The circular genetic map of phage S13, Proc. Natl. Acad. Sci. U.S.A. 58:1438.PubMedGoogle Scholar
  10. Baker, R., and Tessman, I., 1968, Heat stability of mutants in genes II, IIIa and VI of phage S13, Virology 35:179.PubMedGoogle Scholar
  11. Baker, R., Doniger, J., and Tessman, I., 1971, Roles of parental and progeny DNA in two mechanisms of phage S13 recombination, Nature (London) New Biol. 230:23.Google Scholar
  12. Barrell, D. G., Air, G. ML, and Hutchison, C. A., 1976, Overlapping genes in bacteriophage øX174, Nature 264:34.PubMedGoogle Scholar
  13. Bartok, K., and Denhardt, D. T., 1976, Site of cleavage of superhelical øX174 replicative form DNA by the single-strand specific N. crassa nuclease, J. Biol. Chem. 251:530.PubMedGoogle Scholar
  14. Bartok, K., Harbers, B., and Denhardt, D. T., 1975, Isolation and characterization of self-complementary sequences from øX174 viral DNA, J. Mol. Biol. 99:93.PubMedGoogle Scholar
  15. Bauer, W., and Vinograd, J., 1968, The interaction of closed circular DNA with intercalate dyes. I. The superhelix density of SV40 DNA in the presence and absence of dye, J. Mol. Biol. 33:141.PubMedGoogle Scholar
  16. Bayer, M. E., and DeBlois, R. W., 1974, Diffusion constant and dimension of bacteriophage øX174 as determined by self-beat laser light spectroscopy and electron microscopy, J. Virol. 14:975.PubMedGoogle Scholar
  17. Bayer, M. E., and Starkey, T. W., 1972, The adsorption of bacteriophage øX174 and its interactions with E. coli; a kinetic and morphological study, Virology 49:236.PubMedGoogle Scholar
  18. Benbow, R. M., Hutchison, C. A., III, Fabricant, J. D., and Sinsheimer, R. L., 1971, Genetic map of bacteriophage øX174, J. Virol. 7:549.PubMedGoogle Scholar
  19. Benbow, R. M., Eisenberg, M., and Sinsheimer, R. L., 1972a, Multiple length DNA molecules of bacteriophage øX174, Nature (London) 237:141.Google Scholar
  20. Benbow, R. M., Mayol, R. F., Picchi, J. C., and Sinsheimer, R. L., 1972b, Direction of translation and size of bacteriophage øX174 cistrons, J. Virol. 10:99.PubMedGoogle Scholar
  21. Benbow, R. M., Zuccarelli, A. J., Davis, G. C., and Sinsheimer, R. L., 1974a, Genetic recombination in bacteriophage øX174, J. Virol. 13:898.PubMedGoogle Scholar
  22. Benbow, R. M., Zuccarelli, A. J., and Sinsheimer, R. L., 1974b, A role for single strand breaks in bacteriophage øX174 genetic recombination, J. Mol. Biol. 88:629.PubMedGoogle Scholar
  23. Benbow, R. M., Zuccarelli, A. J., Shafer, A. J., and Sinsheimer, R. L. 1974c, Exchange of parental DNA during genetic recombination in bacteriophage øX174, in: Mechanisms in Recombination (R. F. Grell, ed.), pp. 3–18, Plenum, New York.Google Scholar
  24. Benbow, R. M., Zuccarelli, A. J., and Sinsheimer, R. L., 1975, Recombinant DNA molecules of bacteriophage øX174, Proc. Natl. Acad. Sci. USA 72:235.PubMedGoogle Scholar
  25. Berkowitz, S. A., and Day, L. A., 1974, Molecular weight of single-stranded bacteriophage fd DNA: High speed equilibrium sedimentation and light scattering measurements, Biochemistry 13:4825.PubMedGoogle Scholar
  26. Beswick, F. M., and Lunt, M. R., 1972, Adsorption of bacteriophage øX174 to isolated bacterial cell walls, J. Gen. Virol. 16:381.PubMedGoogle Scholar
  27. Blakesley, R. W., and Wells, R. D., 1975, “Single-stranded” DNA from øX174 and M13 is cleaved by certain restriction endonucleases, Nature (London) 257:421.Google Scholar
  28. Bleichrodt, J. F., and Berends-van Abkoude, E. R., 1968, Bacteriophage related to øX174 showing a transition between two forms with different heat sensitivity and adsorption characteristics, Virology 34:366.PubMedGoogle Scholar
  29. Bleichrodt, J. F., and Knijnenburg, C. M., 1969, On the origin of the 70 S component of bacteriophage øX174, Virology 37:132.PubMedGoogle Scholar
  30. Bleichrodt, J. F., and van Abkoude, E. R., 1967, The transition between the two forms of bacteriophage øX174 differing in heat sensitivity and adsorption characteristics, Virology 32:93.PubMedGoogle Scholar
  31. Bleichrodt, J. F., Blok, J., and Berends-van Abkoude, E. R., 1968, Thermal inactivation of bacteriophage øX174 and two of its mutants, Virology 36:343.PubMedGoogle Scholar
  32. Bone, D. R., and Dowell, C. E., 1973a, A mutant of bacteriophage øX174 which infects E. coli K12 strains, Virology 52:319.Google Scholar
  33. Bone, D. R., and Dowell, C. E., 1973b, A mutant of bacteriophage øX174 which infects E. coli K12 strains, II. Replication of 0XtB in ts DNA strains, Virology 52:330.PubMedGoogle Scholar
  34. Borras, M.-T., Vanderbilt, A. S., and Tessman, E. S., 1971, Identification of the acrylamide gel protein peak for gene C of phages S13 and 0X, Virology 45:802.PubMedGoogle Scholar
  35. Borrias, W. E., van de Pol, J. H., van de Vate, C., and van Arkel, G. A., 1969, Complementation experiments between conditional lethal mutants of bacteriophage øX174, Mol. Gen. Genet. 105:152.PubMedGoogle Scholar
  36. Borrias, W. E., Weisbeek, P. J., and van Arkel, G. A., 1976a, An intracistronic region of gene A of bacteriophage øX174 not involved in progeny RF DNA synthesis, Nature 261:245.PubMedGoogle Scholar
  37. Borrias, W. E., Wilschut, I. J. C., Vereijken, J. M., Weisbeek, P. J., and van Arkel, G. A., 1976b, Induction and isolation of mutants in a specific region of gene A of bacteriophage øX174, Virology 70:195.PubMedGoogle Scholar
  38. Bouché, J.-P., Zechel, K., and Romberg, A., 1975, dnaG gene product, a rifampicin-resistant RNA polymerase, initiates the conversion of a single-stranded coliphage DNA to its duplex replicative form, J. Biol. Chem. 250:5995.PubMedGoogle Scholar
  39. Bouvier, F., and Zinder, N. D., 1974, Effects of the dnaA thermosensitive mutation of E. coli on bacteriophage f1 growth and DNA synthesis, Virology 60:139.PubMedGoogle Scholar
  40. Bowes, J. M., 1974, Replication of bacteriophage St-1 in E. coli strain temperature-sensitive in DNA synthesis, J. Virol. 13:1400.PubMedGoogle Scholar
  41. Bowes, J. M., and Dowell, C. E., 1974, Purification and some properties of bacteriophage St-1, J. Virol. 13:53.PubMedGoogle Scholar
  42. Bowman, K. L., and Ray, D. S., 1975, Degradation of the viral strand of øX174 parental replicative form DNA in a Rep - host, J. Virol. 16:838.PubMedGoogle Scholar
  43. Bradley, D. E., 1970, A comparative study of some properties of the øX174 type bacteriophage, Can. J. Microbiol. 16:965.PubMedGoogle Scholar
  44. Bradley, D. E., Dewar, C. A., and Robertson, D., 1969, Structural changes in E. coli infected with a øX174 type bacteriophage, J. Gen. Virol. 5:113.PubMedGoogle Scholar
  45. Brown, D. T., Mackenzie, J. M., and Bayer, M. E., 1971, Mode of host cell penetration by bacteriophage øX174, J. Virol. 7:836.PubMedGoogle Scholar
  46. Brown, N. L., and Smith, M., 1976, The mapping and sequence determination of the single site in øX174am3 replicative form DNA cleaved by restriction endonuclease PstI,FEBS Lett. 65:284.PubMedGoogle Scholar
  47. Brutlag, D., Schekman, R., and Romberg, A., 1971, A possible role for RNA polymerases in the initiation of M13 DNA synthesis, Proc. Natl. Acad. Sci. USA 68:2826.PubMedGoogle Scholar
  48. Bryan, R. N., and Hayashi, M., 1970, Initiation of øX174 RF-primed protein with N-formylmethionine, Biochemistry 9:1904.PubMedGoogle Scholar
  49. Bryan, R. N., Sugiura, M., and Hayashi, M., 1969, DNA-dependent RNA-directed protein synthesis in vitro. I. Extent of genome transcription, Proc. Natl. Acad. Sci. USA 62:483.PubMedGoogle Scholar
  50. Burgess, A. B., 1969a, Studies on the proteins of øX174. II. The protein composition of the øX coat, Proc. Natl. Acad. Sci. USA 64:613.PubMedGoogle Scholar
  51. Burgess, A. B., 1969b, The proteins of bacteriophage øX174, Ph.D. thesis, Harvard University.Google Scholar
  52. Burgess, A. B., and Denhardt, D. T., 1969, Studies on øX174 proteins. I. Phagespecific proteins synthesized after infection of E. coli, J. Mol. Biol. 45:377.Google Scholar
  53. Burnet, F. M., 1927, The relationship between heat-stable agglutinogens and sensitivity to bacteriophage in the Salmonella group, Br. J. Exp. Pathol. 8:121.Google Scholar
  54. Burton, A. J., and Yagi, S., 1968, Intracellular development of bacteriophage øR. I. Host modification of the replicative process, J. Mol. Biol. 34:481.PubMedGoogle Scholar
  55. Calendar, R., Lindqvist, B., Sironi, G., and Clark, A. J., 1970, Characterization of REP- mutants and their interaction with P2 phage, Virology 40:72.PubMedGoogle Scholar
  56. Campbell, A. M., and Jolly, D. J., 1973, Light-scattering studies on supercoil unwinding, Biochem, J. 133:209.Google Scholar
  57. Caspar, D. L. D., and Klug, A., 1962, Physical principles in the construction of regular viruses, Cold Spring Harbor Symp. Quant. Biol. 27:1.PubMedGoogle Scholar
  58. Cerny, R. E., Cerna, E., and Spencer, J. H., 1969, Nucleotide clusters in DNA. IV. Pyrimidine oligonucleotides of bacteriophage S13suN15 DNA and RF, J. Mol. Biol. 46:145.PubMedGoogle Scholar
  59. Chen, C.-Y., Hutchison, C. A., III, and Edgell, M. H., 1973, Isolation and genetic localization of three øX174 promoter regions, Nature (London) New Biol. 243:233.Google Scholar
  60. Clements, J. B., and Sinsheimer, R. L., 1974, Class of øX174 mutants relatively deficient in synthesis of viral RNA, J. Virol. 14:1630.PubMedGoogle Scholar
  61. Clements, J. B., and Sinsheimer, R. L., 1975, Process of infection with bacteriophage øX174. XXXVII. RNA metabolism in øX174-infected cells, J. Virol. 15:151.PubMedGoogle Scholar
  62. Daems, W. T., Eigner, J., van der Sluys, I., and Cohen, J. A., 1962, The fine structure of the 114 S and 70 S components of bacteriophage øX174 as revealed by negative and positive staining methods, Biochim. Biophys. Acta 55:801.PubMedGoogle Scholar
  63. Dalgarno, L., and Sinsheimer, R. L., 1968, Process of infection with bacteriophage øX174. XXIV. New type of temperature-sensitive mutant, J. Virol. 2:822.PubMedGoogle Scholar
  64. Darby, G., Dumas, L. B., and Sinsheimer, R. L., 1970, The structure of the DNA of bacteriophage øX174. VI. Pyrimidine sequences in the complementary strand of the replicative form, J. Mol. Biol. 52:227.PubMedGoogle Scholar
  65. Datta, B., and Poddar, R. K., 1970, Greater vulnerability of the infecting viral strand of replicative form DNA of bacteriophage øX174, J. Virol. 6:583.PubMedGoogle Scholar
  66. Delaney, A. D., and Spencer, J. H., 1976, Nucleotide clusters in deoxyribonucleic acids. XIII. Sequence analysis of the longer unique pyrimidine oligonucleotides of bacteriophage S13 DNA by a method using unlabeled starting oligonucleotides, Biochim. Biophys. Acta 435:269.PubMedGoogle Scholar
  67. Denhardt, D. T., 1972, A theory of DNA replication, J. Theor. Biol. 34:487.PubMedGoogle Scholar
  68. Denhardt, D. T., 1975, The single-stranded DNA phages, CRC Crit. Rev. Microbiol. 4:161.PubMedGoogle Scholar
  69. Denhardt, D. T., and Kato, A. C., 1973, Comparison of the effect of ultraviolet radiation and ethidium bromide intercalation on the conformation of superhelical øX174 replicative form DNA, J. Mol. Biol. 77:419.Google Scholar
  70. Denhardt, D. T., and Marvin, D. A., 1969, Altered coding in single-stranded DNA viruses? Nature (London) 221:769.Google Scholar
  71. Denhardt, D. T., and Silver, R. B., 1966, An analysis of the clone size distribution of øX174 mutants and recombinants, Virology 30:10.PubMedGoogle Scholar
  72. Denhardt, D. T., and Sinsheimer, R. L., 1965a, The process of infection with bacteriophage øX174. III. Phage maturation and lysis after synchronized infection, J. Mol. Biol. 12:641.PubMedGoogle Scholar
  73. Denhardt, D. T., and Sinsheimer, R. L., 1965b, The process of infection with bacteriophage øX174. V. Inactivation of the phage-bacterium complex by decay of 32P incorporated in the infecting particle, J. Mol. Biol. 62:663.Google Scholar
  74. Denhardt, D. T., Dressler, D. H., and Hathaway, A., 1967, The abortive replication of øX174 DNA in a recombination-deficient mutant of E. coli, Proc. Natl. Acad. Sci. USA 57:813.PubMedGoogle Scholar
  75. Denhardt, D. T., Iwaya, M., and Larison, L. L., 1972, The rep mutation. II. Its effect on E. coli and on the replication of bacteriophage øX174, Virology 49:486.PubMedGoogle Scholar
  76. Denhardt, D. T., Iwaya, M., McFadden, G., and Schochetman, G., 1973, The mechanism of replication of øX174 single-stranded DNA. VI. Requirements for ribonucleoside triphosphates and DNA polymerase III, Can. J. Biochem. 51:1588.PubMedGoogle Scholar
  77. Denhardt, D. T., Eisenberg, S., Harbers, B., Lane, H. E. D., and McFadden, G., 1975, Replication of øX174 in E. coli: Structure of the replicating intermediate and the effect of mutations in the host lig and rep genes, in: DNA Synthesis and Its Regulation (M. Goulian and P. Hanawalt, eds.), ICN-UCLA Squaw Valley Symposium, Benjamin, Menlo Park, Calif.Google Scholar
  78. Denhardt, D. T., Eisenberg, S., Bartok, K., and Carter, B. J., 1976, Multiple structures of adeno-associated virus DNA: Analysis of terminally-labeled molecules with endo-nuclease R. HarIII, J. Virol. 18:672.PubMedGoogle Scholar
  79. Derstine, P. L., and Dumas, L. B., 1976, Replication of øX174 in a temperature-sensitive dnaH mutant of E. coli C, J. Bacteriol. (in press).Google Scholar
  80. Doniger, J., and Tessman, I., 1969, An S13 capsid mutant that makes no replicative form DNA, Virology 39:389.PubMedGoogle Scholar
  81. Doniger, J., Warner, R. C., and Tessman, I., 1973, Role of circular dimer DNA in the primary recombination mechanism of bacteriophage S13, Nature (London) New Biol. 242:9.Google Scholar
  82. Dowell, C. E., 1967, Cold-sensitive mutants of bacteriophage øX174. I. A mutant blocked in the eclipse function at low temperature, Proc. Natl. Acad. Sci. USA 58:958.PubMedGoogle Scholar
  83. Dressier, D., 1970, The rolling circle for øX DNA replication. II. Synthesis of single- stranded circles, Proc. Natl. Acad. Sci. USA 67:1934.Google Scholar
  84. Dressier, D. H., and Denhardt, D. T., 1968, On the mechanism of øX single-stranded DNA synthesis, Nature (London) 219:346.Google Scholar
  85. Dressier, D., and Wolfson, J., 1970, The rolling circle for øX DNA replication. III. Synthesis of supercoiled duplex rings, Proc. Natl. Acad. Sci. USA 67:456.Google Scholar
  86. Dumas, L. B., and Miller, C. A., 1973, Replication of bacteriophage øX174 DNA in a temperature-sensitive dnaE mutant of E. coli C, J. Virol. 11:848.PubMedGoogle Scholar
  87. Dumas, L. B., and Miller, C. A., 1974, Inhibition of bacteriophage øX174 DNA replication in dnaB mutants of E. coli C, J. Virol. 14:1369.PubMedGoogle Scholar
  88. Dumas, L. B., and Miller, C. A., 1976, Bacteriophage øX174 single-stranded viral DNA synthesis in temperature-sensitive dnaB and dnaC mutants of E. coli, J. Virol. 18:426.Google Scholar
  89. Dumas, L. B., Miller, C. A., and Bayne, M. L., 1975, Rifampicin inhibition of bacteriophage øX174 parental replicative form DNA synthesis in an E. coli dnaC mutant, J. Virol. 16:575.PubMedGoogle Scholar
  90. Edgell, M. H., Hutchison, C. A., III, and Sinsheimer, R. L., 1969, The process of infection with bacteriophage øX174. XXVIII. Removal of the spike proteins from the phage capsid, J. Mol. Biol. 42:547.PubMedGoogle Scholar
  91. Edgell, M. H., Hutchison, C. A., III, and Sclair, M., 1972, Specific endonuclease R fragments of bacteriophage øX174 DNA, J. Virol. 8:574.Google Scholar
  92. Eisenberg, S., and Denhardt, D. T., 1974a, Structure of nascent øX174 replicative form: Evidence for discontinuous DNA replication, Proc. Natl. Acad. Sci. USA 71:984.PubMedGoogle Scholar
  93. Eisenberg, S., and Denhardt, D. T., 1974b, The mechanism of replication of øX174 single-stranded DNA. X. Distribution of the gaps in nascent RF DNA, Biochem. Biophys. Res. Commun. 61:532.PubMedGoogle Scholar
  94. Eisenberg, S., Harbers, B., Hours, C., and Denhardt, D. T., 1975, The mechanism of replication of øX174 DNA. XII. Non-random location of gaps in nascent øX174 RF II DNA, J. Mol. Biol. 99:107.PubMedGoogle Scholar
  95. Eisenberg, S., Scott, J. F., and Romberg, A., 1976, An enzyme system for replication of duplex circular DNA: The replicative form of phage øX174, Proc. Natl. Acad. Sci. USA 73:1594.PubMedGoogle Scholar
  96. Espejo, R. T., and Sinsheimer, R. L., 1976a, The process of infection with bacteriophage øX174. XXXIX. The structure of a DNA form with restricted binding of intercalative dyes observed during synthesis of øX174 single-stranded DNA, J. Mol. Biol. 102:723.PubMedGoogle Scholar
  97. Espejo, R. T., and Sinsheimer, R. L., 1976b, Process of infection with bacteriophage øX174. XLI. Synthesis of defective øX174 particles at 15 C, J. Virol. 19:732.PubMedGoogle Scholar
  98. Farber, M. B., 1976, Purification and properties of bacteriophage øX174, J. Virol. 17:1027.PubMedGoogle Scholar
  99. Fidanian, H. M., and Ray, D. S., 1974, Replication of bacteriophage M13. VIII. Differential effects of rifampicin and nalidixic acid on the synthesis of the two strands of M13 duplex DNA, J. Mol. Biol. 83:63.PubMedGoogle Scholar
  100. Fiddes, J. C., 1976, Nucleotide sequence of the intercistronic region between genes G and F in bacteriophage øX174 DNA, J. Mol. Biol. 107:1.PubMedGoogle Scholar
  101. Francke, B., and Ray, D. S., 1971, Formation of the parental replicative form DNA of bacteriophage øX174 and initial events in its replication, J. Mol. Biol. 61:565.PubMedGoogle Scholar
  102. Francke, B., and Ray, D. S., 1972, Cis-limited action of the gene A product of bacteriophage øX174 and the essential bacterial site, Proc. Natl. Acad. Sci. USA 69:475.PubMedGoogle Scholar
  103. Fujisawa, H., and Hayashi, M., 1976a, Viral DNA-synthesizing intermediate complex isolated during assembly of bacteriophage øX174, J. Virol. 19:409.PubMedGoogle Scholar
  104. Fujisawa, H., and Hayashi, M., 1976b, Gene A product of øX174 is required for sitespecific endonucleolytic cleavage during single-stranded DNA synthesis in vivo, J. Virol. 19:416.PubMedGoogle Scholar
  105. Fukuda, A., and Sinsheimer, R. L., 1976a, Process of infection with bacteriophage øX174. XXXVIII. Replication of øX174, replicative form in vivo, J. Virol. 17:776.PubMedGoogle Scholar
  106. Fukuda, A., and Sinsheimer, R. L., 1976b, The process of infection with bacteriophage øX174. XL. Viral DNA replication of øX174 mutants blocked in progeny single-stranded DNA synthesis, J. Virol. 18:218.PubMedGoogle Scholar
  107. Funk, F., and Sinsheimer, R. L., 1970a, Process of infection with bacteriophage øX174. XXXIII. Templates for the synthesis of single-stranded DNA, J. Virol. 5:282.PubMedGoogle Scholar
  108. Funk, F., and Sinsheimer, R. L., 19706, Process of infection with bacteriophage øX174, XXXV. Cistron VIII, J. Virol. 6:12.Google Scholar
  109. Funk, F. D., and Snover, D., 1976, Pleiotropic effects of mutants in gene A of bacteriophage øX174, J. Virol. 18:141.PubMedGoogle Scholar
  110. Gefter, M. L., 1975, DNA replication, Annu. Rev. Biochem. 44:45.PubMedGoogle Scholar
  111. Geider, K., Lechner, H., and Hoffmann-Berling, H., 1972, Nucleotide-permeable E. coli cells. V. Structure of newly synthesized øX174 RF DNA, J. Mol. Biol. 69:333.PubMedGoogle Scholar
  112. Gelfand, D. H., and Hayashi, M., 1969, Electrophoretic characterization of øX174-specific proteins, J. Mol. Biol. 44:501.PubMedGoogle Scholar
  113. Gelfand, D. H., and Hayashi, M., 1970, DNA-dependent RNA-directed protein synthesis in vitro. IV. Peptide analysis of an in vitro and in vivo øX174 structural protein, Proc. Natl. Acad. Sci. USA 67:13.PubMedGoogle Scholar
  114. Gilbert, W., and Dressler, D., 1968, DNA replication: The rolling circle model, Cold Spring Harbor Symp. Quant. Biol. 33:473.PubMedGoogle Scholar
  115. Godson, G. N., 1971a, Characterization and synthesis of øX174 proteins in ultraviolet-irradiated and unirradiated cells, J. Mol. Biol. 57:541.PubMedGoogle Scholar
  116. Godson, G. N., 1971b, øX174 gene expression in u.v.-irradiated cells treated with chloramphenicol, Virology 45:788.PubMedGoogle Scholar
  117. Godson, G. N., 1973, DNA heteroduplex analysis of the relation between bacteriophage øX174 and S13, J. Mol. Biol. 77:461.Google Scholar
  118. Godson, G. N., 1914a, Origin and direction of øX174 double- and single-stranded DNA synthesis, J. Mol. Biol. 90:127.Google Scholar
  119. Godson, G. N., 1974b, Evolution of øX174: Isolation of four new 0X-like phages and comparison with øX174, Virology 58:272.PubMedGoogle Scholar
  120. Godson, G. N., 1975a, Evolution of øX174. II. A cleavage map of the G4 phage genome and comparison with the cleavage map of øX174, Virology 63:320.PubMedGoogle Scholar
  121. Godson, G. N., 1975b, A physical map of G4 and the origin of G4 double- and single-stranded DNA replication, in: DNA Synthesis and Its Regulation (M. Goulian and P. Hanawalt, ed.), Benjamin, Menlo Park, Calif.Google Scholar
  122. Godson, G. N., and Boyer, H., 1974, Susceptibility of the 0X-like phages G4 and G14 to EcoR1 endonuclease, Virology 62:270.PubMedGoogle Scholar
  123. Godson, G. N., and Roberts, R. J., 1976, A catalogue of cleavages of øX174, S13, G4, and St-1 by 26 different restriction enzymes, Virology 73:561.PubMedGoogle Scholar
  124. Gordon, C. N., Rush, M. G., and Warner, R. C., 1970, Complex replicative form molecules of bacteriophage øX174 and S13sul05, J. Mol. Biol. 47:495.PubMedGoogle Scholar
  125. Goulian, M., 1968, Incorporation of oligonucleotides into DNA, Proc. Natl. Acad. Sci. USA 61:284.PubMedGoogle Scholar
  126. Goulian, M., Romberg, A., and Sinsheimer, R. L., 1967, Enzymatic synthesis of DNA. XXIV. Synthesis of infectious phage øX174 DNA, Proc. Natl. Acad. Sci. USA 58:2321.PubMedGoogle Scholar
  127. Grohmann, K., Smith, L. H., and Sinsheimer, R. L., 1975, New method for isolation and sequence determination of 5’-terminal regions of bacteriophage øX174 in vitro mRNAs, Biochemistry 14:1951.Google Scholar
  128. Groman, N. B., 1969, Restriction of bacteriophage øX174 by F factor, Biochem. Biophys. Res. Commun. 37:691.PubMedGoogle Scholar
  129. Groman, N. B., and Suzuki, G., 1966, Effect of spermine on lysis and reproduction by bacteriophages øX174, lambda and f2, J. Bacteriol. 92:1735.PubMedGoogle Scholar
  130. Grosveld, F. G., Ojamaa, K. M., and Spencer, J. H., 1976, Fragmentation of bacteriophage S13 replicative form DNA by restriction endonucleases from Haemophilus influenzae and Haemophilus aegyptius, Virology 71:312.PubMedGoogle Scholar
  131. Gschwender, H. H., and Hofschneider, P. H., 1969, Lysis inhibition of øX174-, M12-, and Qβ-infected Escherichia coli by magnesium ions, Biochim. Biophys. Acta 190:454.PubMedGoogle Scholar
  132. Hall, J. B., and Sinsheimer, R. L., 1963, The structure of the DNA of bacteriophage øX174. IV. Pyrimidine sequences, J. Mol. Biol. 6:115.PubMedGoogle Scholar
  133. Harbers, B., Delaney, A. D., Harbers, K., and Spencer, J. H., 1976, Nucleotide clusters in DNA: Comparison of the sequences of the large pyrimidine oligonucleotides of bacteriophages S13 and øX174 DNA, Biochemistry 15:407.PubMedGoogle Scholar
  134. Haworth, S. R., Gilgun, C. F., and Dowell, C. E., 1975, Growth studies of three øX174 mutants in tsDNA mutants of Escherichia coli, J. Virol. 15:720.PubMedGoogle Scholar
  135. Hayashi, M. N., and Hayashi, M., 1972, Isolation of øX174 specific messenger ribonucleic acids in vivo and identification of their 5’ terminal nucleotides, J. Virol. 9:207.PubMedGoogle Scholar
  136. Hayashi, M. N., and Hayashi, M., 1974, Fragment maps of øX174 RF DNA produced by restriction enzymes from Haemophilus aphirophilus and Haemophilus influenzae H-1, J. Virol. 14:1142.PubMedGoogle Scholar
  137. Hayashi, M., Hayashi, M. N., and Hayashi, Y., 1970, Size distribution of øX174 RNA synthesized in vitro, Cold Spring Harbor Symp. Quant. Biol. 35:174.Google Scholar
  138. Hayashi, Y., and Hayashi, M., 1970, Fractionation of øX174 specific mRNA, Cold Spring Harbor Symp. Quant. Biol. 35:171.Google Scholar
  139. Hayashi, Y., and Hayashi, M., 1971, Template activities of the øX174 replicative allomorphic DNAs, Biochemistry 10:4210.Google Scholar
  140. Henry, T. J., and Knippers, R., 1974, Isolation and function of the gene A initiator of bacteriophage øX174: A highly specific DNA endonuclease, Proc. Natl. Acad. Sci. USA 71:1549.PubMedGoogle Scholar
  141. Hoffmann-Berling, H., Kaerner, H. C., and Knippers, R., 1966, Small bacteriophages, Adv. Virus Res. 12:329.PubMedGoogle Scholar
  142. Hofs, E. B. H., van de Pol, J. H., van Arkel, G. A., and Jansz, H. S., 1972, Dimeric circular duplex DNA of bacteriophage øX174 and recombination, Mol. Gen. Genet. 118:161.PubMedGoogle Scholar
  143. Hofs, E. B. H., van Arkel, G. A., Baas, P. D., Ellens, D. J., and Jansz, H. S., 1973, Mechanism of formation of bacteriophage øX174 circular and catenated dimer RF+ DNA, Mol. Gen. Genet. 126:37.PubMedGoogle Scholar
  144. Hutchison, C. A., III, and Edgell, M. H., 1971, Genetic assay for small fragments of bacteriophage øX174 DNA, J. Virol. 8:181.PubMedGoogle Scholar
  145. Hutchison, C. A., III, and Sinsheimer, R. L., 1966, The process of infection with bacteriophage øX174. X. Mutations in a øX lysis gene, J. Mol. Biol. 18:429.PubMedGoogle Scholar
  146. Hutchison, C. A., III, and Sinsheimer, R. L., 1971, Requirement of protein synthesis for bacteriophage øX174 superinfection exclusion, J. Virol. 8:121.PubMedGoogle Scholar
  147. Hutchison, C. A., III, Edgell, M. H., and Sinsheimer, R. L., 1967, The process of infection with bacteriophage øX174. XII. Phenotypic mixing between electrophoretic mutants of øX174, J. Mol. Biol. 23:553.PubMedGoogle Scholar
  148. Ikeda, J.-E., Yudelevich, A., and Hurwitz, J., 1976, Isolation and characterization of the protein coded by gene A of bacteriophage øX174 DNA, Proc. Nat. Acad. Sci. USA 73:2669.PubMedGoogle Scholar
  149. Incardona, N. L., 1974, Mechanism of adsorption and eclipse of bacteriophage øX174. III. Comparison of the activation parameter for the in vitro and in vivo eclipse reactions with mutant and wild type virus, J. Virol. 14:469.PubMedGoogle Scholar
  150. Incardona, N. L., and Selvidge, L., 1973, Mechanism of adsorption and eclipse of bacteriophage øX174. II. Attachment and eclipse with isolated E. coli cell wall lipopolysaccharide, J. Virol. 11:775.PubMedGoogle Scholar
  151. Incardona, N. L., Blonski, R., and Feeney, W., 1972, Mechanism of adsorption and eclipse of bacteriophage øX174. I. In vitro conformational change under conditions of eclipse, J. Virol. 9:96.PubMedGoogle Scholar
  152. Ishiwa, H., and Tessman, I., 1968, Control of host DNA synthesis after infection with bacteriophage S13 and øX174, J. Mol. Biol. 37:467.PubMedGoogle Scholar
  153. Iwaya, M., 1971, On the mechanism of øX174 DNA replication, Ph.D. thesis, Harvard University.Google Scholar
  154. Iwaya, M., and Denhardt, D. T., 1971, The mechanism of replication of øX174 single-stranded DNA. II. The role of viral proteins, J. Mol. Biol. 57:159.PubMedGoogle Scholar
  155. Iwaya, M., and Denhardt, D. T., 1973a, Mechanism of replication of øX174 single-stranded DNA. IV. The parental viral strand is not conserved in the replicating DNA structure, J. Mol. Biol. 73:279.PubMedGoogle Scholar
  156. Iwaya, M., and Denhardt, D. T., 1973b, Mechanism of replication of øX174. V. Dispersive and conservative transfer of parental DNA into progeny DNA, J. Mol. Biol. 73:291.PubMedGoogle Scholar
  157. Iwaya, M., Eisenberg, S., Bartok, K., and Denhardt, D. T., 1973, Mechanism of replication of single-stranded øX174 DNA. VII. Circularization of the progeny viral strand, J. Virol. 12:808.PubMedGoogle Scholar
  158. Jazwinski, S. M., and Kornberg, A., 1975, DNA replication in vitro starting with an intact øX174 phage, Proc. Natl. Acad. Sci. USA 72:3863.PubMedGoogle Scholar
  159. Jazwinski, S. M., Lindberg, A. A., and Kornberg, A., 1975a, The lipopolysaccharide receptor for bacteriophages øX174 and S13, Virology 66:268.PubMedGoogle Scholar
  160. Jazwinski, S. M., Lindberg, A. A., and Kornberg, A., 1975b, The gene H spike protein of bacteriophages øX174 and S13. I. Functions in phage-receptor recognition and in transfection, Virology 66:283.PubMedGoogle Scholar
  161. Jazwinski, S. M., Marco, R., and Kornberg, A., 1975c, The gene H spike protein of bacteriophage øX174 and S13. II. Relation to synthesis of the parental replicative form, Virology 66:294.PubMedGoogle Scholar
  162. Jeng, Y. C., and Hayashi, M., 1970, A new complementation group of øX174, Virology 40:407.Google Scholar
  163. Jeng, Y., Gelfand, D., Hayashi, M., Shleser, R., and Tessman, E. S., 1970, The eight genes of bacteriophage øX174 and S13 and comparison of the phage-specified proteins, J. Mol. Biol. 49:521.PubMedGoogle Scholar
  164. Jeppesen, P. G. N., Sander, L., and Slocombe, P. M., 1976, A restriction cleavage map of øX174 DNA by pulse-chase labelling using E. coli DNA polymerase, Nucleic Acids Res. 3:1323.PubMedGoogle Scholar
  165. Johnson, P. H., and Sinsheimer, R. L., 1974, Structure of an intermediate in the replication of bacteriophage øX174 DNA: The initiation site for DNA replication, J. Mol. Biol. 83:47.PubMedGoogle Scholar
  166. Johnson, P. H., Lee, A. S., and Sinsheimer, R. L., 1973, Production of specific fragments of øX174 replicative form DNA by a restriction enzyme from Haemophilus parainfluenzae, endonuclease HP, J. Virol. 11:596.PubMedGoogle Scholar
  167. Kapitza, E. L., Stukacheva, E. A., and Shemayakin, M. F., 1976, The effect of the termination rho factor and ribonuclease III on the transcription of bacteriophage øX174 DNA in vitro, FEBS Lett. 64:81.PubMedGoogle Scholar
  168. Kay, D., and Bradley, D. E., 1962, The structure of bacteriophage øR, J. Gen. Microbiol. 27:195.PubMedGoogle Scholar
  169. Kim, J.-S., Sharp, P. A., and Davidson, N., 1972, Electron microscope studies of heteroduplex DNA from a deletion mutant of bacteriophage øX174, Proc. Natl. Acad. Sci. USA 69:1948.PubMedGoogle Scholar
  170. Knippers, R., and Sinsheimer, R. L., 1968a, Process of infection with bacteriophage øX174. XX. Attachment of the parental DNA of bacteriophage øX174 to a fast-sedimenting cell component, J. Mol. Biol. 34:17.PubMedGoogle Scholar
  171. Knippers, R., and Sinsheimer, R. L., 1968b, Process of infection with bacteriophage øX174. XXIII. DNA synthesis in cells infected by a coat protein mutant, J. Mol.. Biol 35:591.PubMedGoogle Scholar
  172. Knippers, R., Komano, T., and Sinsheimer, R. L., 1968, The process of infection with bacteriophage øX174. XXI. Replication and fate of the replicative form, Proc. Natl. Acad. Sci. USA 59:577.PubMedGoogle Scholar
  173. Knippers, R., Razin, A., Davis, R., and Sinsheimer, R. L., 1969a, The process of infection with bacteriophage øX174. XXIX. In vivo studies on the synthesis of the single-stranded DNA of progeny øX174 bacteriophage, J. Mol. Biol. 45:237.PubMedGoogle Scholar
  174. Knippers, R., Salivar, W. O., Newbold, J. E., and Sinsheimer, R. L., 1969b, Process of infection with bacteriophage øX174. XXVI. Transfer of the parental DNA of bacteriophage øX174 into progeny bacteriophage particles, J. Mol. Biol. 39:641.PubMedGoogle Scholar
  175. Knippers, R., Whalley, J. M., and Sinsheimer, R. L., 1969c, The process of infection with bacteriophage øX174. XXX. Replication of double-stranded DNA, Proc. Natl. Acad. Sci. USA 64:275.PubMedGoogle Scholar
  176. Komano, T., Knippers, R., and Sinsheimer, R. L., 1968, The process of infection with bacteriophage øX174. XXII. Synthesis of progeny single-stranded DNA, Proc. Natl. Acad. Sei. USA 59:911.Google Scholar
  177. Kornberg, A., 1974, DNA Synthesis, W. H. Freeman and Company, San Francisco.Google Scholar
  178. Kranias, E. G., and Dumas, L. B., 1974, Replication of bacteriophage øX174 DNA in a temperature-sensitive dnaC mutant of E. coli C, J. Virol. 13:146.PubMedGoogle Scholar
  179. Kranias, E. G., and Dumas, L. B., 1975, Synthesis of complex forms of bacteriophage øX174 double-stranded DNA in a temperature-sensitive dnaC mutant of E. coli C, J. Virol. 16:412.PubMedGoogle Scholar
  180. Lane, H. E. D., and Denhardt, D. T., 1974, The rep mutation. III. Altered structure of the replicating E. coli chromosome, J. Bacteriol. 120:805.PubMedGoogle Scholar
  181. Lane, H. E. D., and Denhardt, D. T., 1975, The rep mutation. IV. Slower movement of replication forks in E. coli rep strains, J. Mol. Biol. 97:99.PubMedGoogle Scholar
  182. Lee, A. S., and Sinsheimer, R. L., 1974a, A cleavage map of bacteriophage øX174 genome, Proc. Natl. Acad. Sci. USA 71:2882.PubMedGoogle Scholar
  183. Lee, A. S., and Sinsheimer, R. L., 1974b, Location of the 5-methylcytosine group on the bacteriophage øX174 genome, J. Virol. 14:872.PubMedGoogle Scholar
  184. Lerman, L. S., 1974, Chromosomal analogues: Long-range order in ψ-condensed DNA, Cold Spring Harbor Symp. Quant. Biol. 38:59.PubMedGoogle Scholar
  185. Lindberg, A. A., 1973, Bacteriophage receptors, Annu. Rev. Microbiol. 27:205.PubMedGoogle Scholar
  186. Lindqvist, B. H., and Sinsheimer, R. L., 1967a, Process of infection with bacteriophage øX174. XIV. Studies on macromolecular synthesis during infection with a lysis-defective mutant, J. Mol. Biol. 28:87.PubMedGoogle Scholar
  187. Lindqvist, B. H., and Sinsheimer, R. L., 1967b, The process of infection with bacteriophage øX174. XV. Bacteriophage DNA synthesis in abortive infections with a set of conditional lethal mutants, J. Mol. Biol. 30:69.PubMedGoogle Scholar
  188. Lindqvist, B. H., and Sinsheimer, R. L., 1968, The process of infection with bacteriophage øX174. XVI. Synthesis of the replicative form and its relationship to viral single-stranded DNA synthesis, J. Mol. Biol. 32:285.PubMedGoogle Scholar
  189. Ling, V., 1972, Pyrimidine sequences from the DNA of bacteriophages fd, f1, and øX174, Proc. Natl. Acad. Sci. USA 69:742.PubMedGoogle Scholar
  190. Linney, E., and Hayashi, M., 1973, Two proteins of gene A of øX174, Nature (London) New Biol. 245:6.Google Scholar
  191. Linney, E., and Hayashi, M., 1974, Intragenic regulation of the synthesis of øX174 gene A proteins, Nature (London) 249:345.Google Scholar
  192. Linney, E. A., Hayashi, M. N., and Hayashi, M., 1972, Gene A of øX174. I. Isolation and identification of the products, Virology 50:381.PubMedGoogle Scholar
  193. Manheimer, L, and Truffaut, N., 1974, Growth of bacteriophage øX174 in E. coli strains carrying temperature sensitive mutations for DNA initiation, Mol. Gen. Genet. 130:21.PubMedGoogle Scholar
  194. Martin, D. G., and Godson, G. N., 1975, Identification of a øX174 coded protein involved in the shut off of host DNA replication, Biochem. Biophys. Res. Commun. 65:323.PubMedGoogle Scholar
  195. Marvin, D. A., and Hohn, B., 1969, Filamentous bacterial viruses, Bacteriol. Rev. 33:172.PubMedGoogle Scholar
  196. Mayol, R. F., and Sinsheimer, R. L., 1970, Process of infection with bacteriophage øX174. XXXVI. Measurement of virus-specific proteins during a normal cycle of infection, J. Virol. 6:310.PubMedGoogle Scholar
  197. Mazur, B. J., and Model, P., 1973, Regulation of coliphage f1 single-stranded DNA synthesis by a DNA-binding protein, J. Mol. Biol. 78:285.PubMedGoogle Scholar
  198. McFadden, G., 1975, Studies on the replication of bacteriophage øX174, Ph.D. thesis, McGill University.Google Scholar
  199. McFadden, G. M., and Denhardt, D. T., 1974, Mechanism of replication of øX174 single-stranded DNA. IX. Requirement for the E. coli dnaG protein, J. Virol. 14:1070.PubMedGoogle Scholar
  200. McFadden, G., and Denhardt, D. T., 1975, The mechanism of replication of øX174 DNA. XII. Discontinuous synthesis of the complementary strand in an E. coli host with a temperature-sensitive polynucleotide ligase, J. Mol. Biol. 99:125.PubMedGoogle Scholar
  201. Merriam, V., Dumas, L. B., and Sinsheimer, R. L., 1971a, Genetic expression in heterozygous replicative form molecules of øX174, J. Virol. 7:603.PubMedGoogle Scholar
  202. Merriam, V., Funk, F., and Sinsheimer, R. L., 1971b, Genetic expression in whole cells of heterozygous replicative form molecules of øX174, Mutation Res. 12:206.PubMedGoogle Scholar
  203. Middleton, J. H., Edgell, M. H., and Hutchison, C. A., III, 1972, Specific fragments of øX174 DNA produced by a restriction enzyme from H. aegyptius, endonuclease Z, J. Virol. 10:42.PubMedGoogle Scholar
  204. Miller, L. K., and Sinsheimer, R. L., 1974, Nature of øX174 linear DNA from a DNA ligase-deficient host, J. Virol. 14:1503.PubMedGoogle Scholar
  205. Neuwald, P. D., 1975, In vitro system for the study of bacteriophage øX174 adsorption and eclipse, J. Virol. 15:497.PubMedGoogle Scholar
  206. Newbold, J. E., and Sinsheimer, R. L., 1970a, The process of infection with bacteriophage øX174. XXXI. Abortive infection at low temperatures, J. Mol. Biol. 49:23.PubMedGoogle Scholar
  207. Newbold, J. E., and Sinsheimer, R. L., 1970b, The process of infection with bacteriophage øX174. XXXII. Early stages in the infection process: attachment, eclipse, DNA penetration, J. Mol. Biol. 49:49.PubMedGoogle Scholar
  208. Newbold, J. E., and Sinsheimer, R. L., 1970c, Process of infection with bacteriophage øX174. XXXIV. Kinetics of the attachment and eclipse steps of the infection, J. Virol. 5:427.PubMedGoogle Scholar
  209. Palchoudhury, S. R., and Poddar, R. K., 1968, Influence of the viral genome on ribonucleic acid synthesis in E. coli infected with øX174, J. Mol. Biol. 32:505.PubMedGoogle Scholar
  210. Poljak, R. J., and Suruda, A. J., 1969, The coat proteins of øX174 and S13, Virology 39:145.PubMedGoogle Scholar
  211. Pollock, T. J., 1976, Gene D of Bacteriophage øX174: Absence of transcriptional and translational regulatory properties, J. Virol. (in press).Google Scholar
  212. Puga, A., and Tessman, I., 1973a, Mechanism of transcription of bacteriophage S13. I. Dependence of mRNA on amount and configuration of DNA, J. Mol. Biol. 75:83.PubMedGoogle Scholar
  213. Puga, A., and Tessman, I., 1973b, Mechanism of transcription of bacteriophage S13. II. Inhibition of phage specific transcription by nalidixic acid, J. Mol. Biol. 75:99.PubMedGoogle Scholar
  214. Puga, A., and Tessman, I., 1973c, Membrane binding of phage S13 messenger RNA, Virology 56:375.PubMedGoogle Scholar
  215. Puga, A., Borras, M.-T., Tessman, E. S., and Tessman, I., 1973, Difference between functional and structural integrity of messenger RNA, Proc. Natl. Acad. Sci. USA 70:2171.PubMedGoogle Scholar
  216. Radloff, R., and Vinograd, J., 1971, The absence of a non-nucleotide linker in polyoma and øX174 DNA, Biochim. Biophys. Acta 247:207.PubMedGoogle Scholar
  217. Ray, D. S., and Dueber, J., 1975, Structure and replication of replicative forms of the øX-related bacteriophage G4, in: DNA Synthesis and Its Regulation (M. Goulian and P. Hanawalt, eds.), Benjamin, Menlo Park, Calif.Google Scholar
  218. Razin, A., 1973, DNA methylase induced by bacteriophage øX174, Proc. Natl. Acad. Sci. USA 70:3773.PubMedGoogle Scholar
  219. Razin, A., and Sinsheimer, R. L., 1970, Replicative form II DNA of øX174: Resistance to exonucleolytic cleavage by E. coli DNA polymerase, Proc. Natl. Acad. Sci. USA 66:646.PubMedGoogle Scholar
  220. Razin, A., Sedat, J. W., and Sinsheimer, R. L., 1970, Structure of the DNA of bacteriophage øX174. VII. Methylation, J. Mol. Biol. 53:251.PubMedGoogle Scholar
  221. Razin, A., Sedat, J. W., and Sinsheimer, R. L., 1973, In vivo methylation of replicating bacteriophage øX174 DNA, J. Mol. Biol. 78:417.PubMedGoogle Scholar
  222. Razin, A., Goren, D., and Friedman, J., 1975, Studies on the biological role of DNA methylation: Inhibition of methylation and maturation of the bacteriophage øX174 by nicotinamide, Nucleic Acids Res. 2:1967.PubMedGoogle Scholar
  223. Roberts, R. J., 1976, Restriction endonucleases, CRC Crit. Rev. Biochem. (in press).Google Scholar
  224. Rose, J. A., 1974, Parvovirus reproduction, in: Comprehensive Virology, Vol. 3 (H. Fraenkel-Conrat and R. R. Wagner, eds.), Plenum, New York.Google Scholar
  225. Rush, M. G., and Warner, R. C., 1968, Molecular recombination in a circular genome—øX174 and S13, Cold Spring Harbor Symp. Quant. Biol. 33:459.PubMedGoogle Scholar
  226. Sakai, H., and Komano, T., 1975, Bacteriophage øX174 DNA synthesis in E. coli HF4704S (dnaHts) cells, Biochim. Biophys. Acta 395:433.PubMedGoogle Scholar
  227. Salivar, W. O., and Sinsheimer, R. L., 1969, Intracellular location and number of replicating parental DNA molecules of bacteriophages lambda and øX174, J. Mol. Biol. 41:39.PubMedGoogle Scholar
  228. Sanger, F., 1975, Nucleotide sequences in DNA, Proc. R. Soc. London 191:317.Google Scholar
  229. Schaller, H., 1969, Structure of the DNA of bacteriophage fd. I. Absence of non-phosphodiester linkages, J. Mol. Biol. 44:435.PubMedGoogle Scholar
  230. Schekman, R. W., and Ray, D. S., 1971, Polynucleotide ligase and øX174 singlestrand synthesis, Nature (London) New Biol. 231:170.Google Scholar
  231. Schekman, R. W., Iwaya, M., Bromstrup, K., and Denhardt, D. T., 1971, The mechanism of replication of øX174 single-stranded DNA. III. An enzymic study of the structure of the replicative form II DNA, J. Mol. Biol. 57:177.PubMedGoogle Scholar
  232. Schekman, R., Weiner, A., and Romberg, A., 1974, Multienzyme systems of DNA replication, Science 186:987.PubMedGoogle Scholar
  233. Schekman, R., Weiner, J. H., Weiner, A., and Romberg, A., 1975, Ten proteins required for conversion of øX174 single-stranded DNA to duplex form in vitro: Resolution and reconstitution, J. Biol. Chem. 250:5859.PubMedGoogle Scholar
  234. Schnegg, B., and Hofschneider, P. H., 1969, Mutant of øX174 accessible to host-controlled modification, J. Virol. 3:541.PubMedGoogle Scholar
  235. Schnegg, B., and Hofschneider, P. H., 1970, Transfer of parental øX174 DNA to progeny bacteriophage particles observed at low multiplicities of infection, J. Mol. Biol. 51:315.PubMedGoogle Scholar
  236. Schröder, C. H., and Raerner, H.-C, 1972, Replication of bacteriophage øX174 replicative form DNA in vivo, J. Mol. Biol. 71:351.PubMedGoogle Scholar
  237. Schröder, C., and Raerner, H.-C, 1971, Infectivity to E. coli spheroplasts of linear øX174 DNA strands derived from replicative form (RF II) of øX DNA, FEBS Lett. 19:38.PubMedGoogle Scholar
  238. Schröder, C. H., Erben, E., and Raerner, H.-C, 1973, A rolling circle model of the in vivo replication of bacteriophage øX174 replicative form DNA: Different fate of two types of progeny replicative form, J. Mol. Biol. 79:599.PubMedGoogle Scholar
  239. Sedat, J. W., and Sinsheimer, R. L., 1970, The in vivo øXmRNA, Cold Spring Harb. Symp. Quant. Biol. 35:163.Google Scholar
  240. Sedat, J., Lyon, A., and Sinsheimer, R. L., 1969, Purification of E. coli pulse-labeled RNA by benzoylated DEAE-cellulose chromatography, J. Mol. Biol. 44:415.PubMedGoogle Scholar
  241. Sertic, V., and Boulgakov, N., 1935, Classification et identification des typhi-phages, C.R.Soc. Biol. 119:1270.Google Scholar
  242. Shleser, R., Puga, A., and Tessman, E. S., 1969a, Synthesis of RF DNA and mRNA by gene IV mutants of bacteriophage S13, J. Virol. 4:394.PubMedGoogle Scholar
  243. Shleser, R., Tessman, E. S., and Casaday, G., 1969b, Protein synthesis by a mutant of phage S13 blocked in DNA synthesis, Virology 38:166.PubMedGoogle Scholar
  244. Siden, E. J., and Hayashi, M., 1974, Role of the gene B product in bacteriophage øX174 development, J. Mol. Biol. 89:1.PubMedGoogle Scholar
  245. Siegel, J. E. D., and Hayashi, M., 1969, øX174 bacteriophage structural mutants which affect DNA synthesis, J. Virol. 4:400.PubMedGoogle Scholar
  246. Silverstein, S., and Billen, D., 1971, Transcription: Role in the initiation and replication of DNA synthesis in E. coli and øX174, Biochim. Biophys. Acta 247:383.PubMedGoogle Scholar
  247. Singh, S., and Ray, D. S., 1975, A novel single-strand endonuclease specific for øX174 DNA, Biochem. Biophys. Res. Commun. 67:1429.PubMedGoogle Scholar
  248. Sinsheimer, R. L., 1959, Purification and properties of bacteriophage øX174, J. Mol. Biol. 1:37.Google Scholar
  249. Sinsheimer, R. L., 1968, Bacteriophage øX174 and related viruses, in: Progress in Nucleic Acid Research and Molecular Biology, Vol. 8 (J. N. Davidson and W. E. Cohn, eds.), pp. 115–170, Academic Press, New York.Google Scholar
  250. Sinsheimer, R. L., 1970, The life cycle of a single-stranded DNA virus, Harvey Led. Ser. 64:69.Google Scholar
  251. Smith, L. H., and Sinsheimer, R. L., 1976a, The in vitro transcription units of øX174. I. Characterization of synthetic parameters and measurement of transcript molecular weights, J. Mol. Biol. 103:681.PubMedGoogle Scholar
  252. Smith, L. H., and Sinsheimer, R. L., 1976b, The in vitro transcription units of øX174. II. In vitro initiation sites of øX174 transcription, J. Mol. Biol. 103:699.PubMedGoogle Scholar
  253. Smith, L. H., and Sinsheimer, R. L., 1976c, The in vitro transcription units of øX174. III. Initiation with specific 5’ end oligonucleotides of in vitro øX174 RNA, J. Mol. Biol. 103:711.PubMedGoogle Scholar
  254. Smith, L. H., Grohmann, K., and Sinsheimer, R. L., 1974, Nucleotide sequences of the 5’ termini of øX174 mRNAs synthesized in vitro, Nucleic Acids Res. 1:1521.PubMedGoogle Scholar
  255. Spencer, J. H., Cerny, R., Cerna, E., and Delaney, A., 1972, Characterization of bacteriophage S13 suN15 single-strand and replicative form DNA, J. Virol. 10:134.PubMedGoogle Scholar
  256. Stone, A. B., 1970a, General inhibition of E. coli macromolecular synthesis by high multiplicities of bacteriophage øX174, J. Mol. Biol. 47:215.PubMedGoogle Scholar
  257. Stone, A. B., 19706, Protein synthesis and the arrest of bacterial DNA synthesis by bacteriophage øX174, Virology 42:171.Google Scholar
  258. Sumida-Yasumoto, C., Yudelevich, A., and Hurwitz, J., 1976, DNA synthesis in vitro dependent upon øX174 replicative form I DNA, Proc. Natl. Acad. Sci. USA 73:1887.PubMedGoogle Scholar
  259. Suruda, A. J., and Poljak, A. J., 1971, Separation and purification of the coat proteins of øX174, Virology 46:164.PubMedGoogle Scholar
  260. Taketo, A., 1973, Sensitivity of E. coli to viral nucleic acid, VI. Capacity of dna mutants and DNA polymerase-less mutants for multiplication of øA and øX174, Mol. Gen. Genet. 122:15.PubMedGoogle Scholar
  261. Taketo, A., 1974, Properties of bacterial virus øA and its DNA, J. Biochem. 75:951.PubMedGoogle Scholar
  262. Taketo, A., 1975a, Effect of mitomycin C on the capacity of E. coli to support multiplication of øA, J. Gen. Appl. Microbiol. 21:183.Google Scholar
  263. Taketo, A., 1975b, Replication of øA and øX174 in E. coli mutants thermosensitive in DNA synthesis, Mol. Gen. Genet. 139:285.PubMedGoogle Scholar
  264. Tessman, E. S., 1965, Complementation groups in phage S13, Virology 25:303.PubMedGoogle Scholar
  265. Tessman, E. S., 1966, Mutants of bacteriophage S13 blocked in infectious DNA synthesis, J. Mol. Biol. 17:218.PubMedGoogle Scholar
  266. Tessman, E. S., 1967, Gene function in phage S13, in: The Molecular Biology oj Viruses (J. S. Colter and W. Paranchych, eds.), Academic Press, New York.Google Scholar
  267. Tessman, E. S., and Peterson, P. K., 1976, Bacterial rep - mutations that block development of small DNA phages late in infection, J. Virol. 20:400.PubMedGoogle Scholar
  268. Tessman, E. S., Borras, M.-T., and Sun, I. L., 1971, Superinfection in bacteriophage S13 and determination of the number of bacteriophage particles which can function in an infected cell, J. Virol. 8:111.PubMedGoogle Scholar
  269. Tessman, I., 1966, Genetic recombination of phage S13 in a recombination-deficient mutant of Escherichia coli K12, Biochem. Biophys. Res. Commun. 22:169.PubMedGoogle Scholar
  270. Tessman, I., 1968, Selective stimulation of one of the mechanisms for genetic recombination of bacteriophage S13, Science 161:481.PubMedGoogle Scholar
  271. Tessman, I., and Tessman, E. S., 1968, Gene functions and genetics of phage S13, in: Molecular Genetics (H. G. Wittmann and H. Schuster, eds.), Springer-Verlag, Berlin.Google Scholar
  272. Tessman, I., Ishiwa, H., Kumar, S., and Baker, R., 1967, Bacteriophage S13: A seventh gene, Science 156:824.PubMedGoogle Scholar
  273. Tessman, I., Tessman, E. S., Pollock, T. J., Borras, M.-T., Puga, A., and Baker, R., 1976, Reinitiation mutants of gene B of phage S13 that mimic gene A mutants in blocking RF synthesis, J. Mol. Biol. 103:583.PubMedGoogle Scholar
  274. Thomas, M., and Davis, R. W., 1975, Studies on the cleavage of bacteriophage lambda DNA with EcoR1 restriction endonuclease, J. Mol. Biol. 91:315.PubMedGoogle Scholar
  275. Thompson, B. J., Escarmis, C., Parker, B., Slater, W. C., Doniger, J., Tessman, I., and Warner, R. C., 1975, Figure-8 configuration of dimers of S13 and øX174 replicative form DNA, J. Mol. Biol. 91:408.Google Scholar
  276. Tonegawa, S., and Hayashi, M., 1970, Intermediates in the assembly of øX174, J. Mol. Biol. 48:219.PubMedGoogle Scholar
  277. Truffaut, N., and Sinsheimer, R. L., 1974, Use of bacteriophage øX174 replicative form progeny DNA as templates for transcription, J. Virol. 13:818.PubMedGoogle Scholar
  278. Truitt, C. L., and Walker, J. R., 1974, Growth of phages lambda, øX174 and M13 requires the dnaZ (formerly dnaH) gene product of E. coli, Biochem. Biophys. Res. Commun. 61:1036.PubMedGoogle Scholar
  279. Vanderbilt, A. S., and Tessman, I., 1970, Mutagenic methods for determining which DNA strand is transcribed for individual viral genes, Nature (London) 228:54.Google Scholar
  280. Vanderbilt, A. S., Borras, M.-T., and Tessman, E. S., 1971, Direction of translation in phage S13 as determined from the sizes of polypeptide fragments of nonsense mutants, Virology 43:352.PubMedGoogle Scholar
  281. Vanderbilt, A. S., Borras, M.-T., Germeraad, S., Tessman, I., and Tessman, E. S., 1972, A promoter site and polarity gradients in phage S13, Virology 50:171.PubMedGoogle Scholar
  282. van der Mei, D., Brons, J. T., and Jansz, H., 1972a, The effect of rifampicin on the replication of the replicative form of bacteriophage øX174 DNA, Biochim. Biophys. Acta 262:463.PubMedGoogle Scholar
  283. van der Mei, D., Zandberg, J., and Jansz, H. S., 1972b, The effect of chloramphenicol on synthesis of øX174-specific proteins and the detection of the cistron A proteins, Biochim. Biophys. Acta 287:312.PubMedGoogle Scholar
  284. Vereijken, J. M., van Mansfeld, A. D. M., Baas, P. D., and Jansz, H. S., 1975, Arthrobacter luteus restriction endonuclease cleavage map of øX174 RF DNA, Virology 68:221.PubMedGoogle Scholar
  285. Vito, C. C., and Dowell, C. E., 1976, Novel replicative properties of a capsid mutant of bacteriophage øX174, J. Virol. 18:942.PubMedGoogle Scholar
  286. Vito, C. C., Primrose, S. B., and Dowell, C. E., 1975, Growth of a capsid mutant of bacteriophage øX174 in a temperature-sensitive strain of E. coli, J. Virol. 15:281.Google Scholar
  287. Wang, J. C., 1969, Degree of superhelicity of covalently closed cyclic DNA’s from E. coli, J. Mol. Biol. 43:263.Google Scholar
  288. Wang, J. C., 1974, The degree of unwinding of the DNA helix by ethidium. I. Titration of twisted PM2 DNA molecules in alkaline CsCl density gradients, J. Mol. Biol. 89:783.PubMedGoogle Scholar
  289. Waring, M., 1970, Variation of the supercoils in closed circular DNA by binding of antibiotics and drugs: Evidence for molecular models involving intercalation, J. Mol. Biol. 54:247.PubMedGoogle Scholar
  290. Warnaar, S. O., Mulder, G., van der Sluis, I., van Kesteren, L. W., and Cohen, J. A., 1969, The transcription in vitro of various forms of øX174 DNA, Biochim. Biophys. Acta 174:239.PubMedGoogle Scholar
  291. Warnaar, S. O., De Mol, A., Mulder, G., Abrahams, P. J., and Cohen, J. A., 1970, The transcription of bacteriophage øX174 DNA, Biochim. Biophys. Acta 199:340.PubMedGoogle Scholar
  292. Watson, G., and Paigen, K., 1971, Isolation and characterization of an E. coli bacteriophage requiring cell wall galactose, J. Virol. 8:669.PubMedGoogle Scholar
  293. Weiner, J. H., McMacken, R., and Kornberg, A., 1976, Isolation of an intermediate which precedes dnaG RNA polymerase participation in enzymatic replication of øX174 DNA, Proc. Natl. Acad. Sci. USA 73:752.PubMedGoogle Scholar
  294. Weisbeek, P. J., and Sinsheimer, R. L., 1974, A DNA-protein complex involved in bacteriophage øX174 particle formation, Proc. Natl. Acad. Sci. USA 71:3054.PubMedGoogle Scholar
  295. Weisbeek, P. J., and van Arkel, G. A., 1976, On the origin of bacteriophage øX174 replicative form DNA replication, Virology 72:12.Google Scholar
  296. Weisbeek, P. J., van de Pol, J. H., and van Arkel, G. A., 1972, Genetic characterization of the DNA of the bacteriophage øX174 70 S particle, Virology 48:456.PubMedGoogle Scholar
  297. Weisbeek, P. J., van de Pol, J. H., and van Arkel, G. A., 1973, Mapping of host range mutants of bacteriophage øX174, Virology 52:408.PubMedGoogle Scholar
  298. Weisbeek, P. J., Vereijken, J. M., Baas, P. D., Jansz, H. S., and van Arkel, G. A., 1976, The genetic map of bacteriophage øX174 constructed with restriction enzyme fragments, Virology 72:61.PubMedGoogle Scholar
  299. Wickner, R. B., Wright, M., Wickner, S., and Hurwitz, J., 1972, Conversion of øX174 and fd single-stranded DNA to replicative forms in extracts of E. coli, Proc. Natl. Acad. Sci. USA 69:3233.Google Scholar
  300. Wickner, S., and Hurwitz, J., 1974, Conversion of øX174 viral DNA to double-stranded form by purified E. coli proteins, Proc. Natl. Acad. Sci. USA 71:4120.PubMedGoogle Scholar
  301. Wickner, S., and Hurwitz, J., 1975a, In vitro synthesis of DNA, in: DNA Synthesis and Its Regulation (M. Goulian and P. Hanawalt, ed.), ICN-UCLA Winter Conference, Benjamin, Menlo Park, Calif.Google Scholar
  302. Wickner, S., and Hurwitz, J., 1975b, Association of øX174 DNA-dependent ATPase activity with an E. coli protein, replication factor Y, required for in vitro synthesis of øX174 DNA, Proc. Natl. Acad. Sci. USA 72:3342.PubMedGoogle Scholar
  303. Wickner, S., and Hurwitz, J., 1976, Involvement of Escherichia coli dnaZ gene product in DNA elongation in vitro, Proc. Natl. Acad. Sci. USA 73:1053.PubMedGoogle Scholar
  304. Wickner, W., and Kornberg, A., 1974a, A novel form of RNA polymerase from E. coli, Proc. Natl. Acad. Sci. USA 71:4425.PubMedGoogle Scholar
  305. Wickner, W., and Kornberg, A., 1974b, A holoenzyme form of DNA polymerase III, J. Biol. Chem. 249:6244.PubMedGoogle Scholar
  306. Woodworth-Gutai, M., and Lebowitz, J. 1976, Introduction of interrupted secondary structure in supercoiled DNA as a function of superhelix density: Consideration of hairpin structures in superhelical DNA, J. Virol. 18:195.PubMedGoogle Scholar
  307. Yarus, M. J., and Sinsheimer, R. L., 1967, The process of infection with bacteriophage øX174. XIII. Evidence for an essential bacterial “site,” J. Virol. 1:135.PubMedGoogle Scholar
  308. Yokoyama, Y., Romano, T., and Onodera, K., 1971, The presence of short DNA chains in øX174 RF II in the late phase of infection, Agr. Biol. Chem. 34:1353.Google Scholar
  309. Zahler, S. A., 1958, Some biological properties of bacteriophages S13 and øX174, J. Baeteriol. 75:310.Google Scholar
  310. Zechel, K., Bouché, J.-P., and Kornberg, A., 1975, Replication of phage G4: A novel and simple system for the initiation of DNA synthesis, J. Biol. Chem. 250:4684.PubMedGoogle Scholar
  311. Zuccarelli, A. J., 1974, Formation of parental replicative forms of øX174: Synthesis of the first complementary strand, Ph.D. thesis, California Institute of Technology.Google Scholar
  312. Zuccarelli, A. J., Benbow, R. M., and Sinsheimer, R. L., 1972, Deletion mutants of bacteriophage øX174, Proc. Natl. Acad. Sci. USA 69:1905.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1977

Authors and Affiliations

  • David T. Denhardt
    • 1
  1. 1.Department of BiochemistryMcGill UniversityMontrealCanada

Personalised recommendations