Structure of Viral Nucleic Acids in Situ

  • T. I. Tikchonenko
Part of the Comprehensive Virology book series (CV, volume 5)

Abstract

The main principles of the structural organization of nucleic acids in solution having been established, scientists are increasingly turning their attention to the fine features of the secondary structure of DNA and RNA and the possibilities of their reversible conformational alterations under the influence of various external factors. These studies have contributed toward an understanding of the fact that the environments of nucleic acids in ribo- and deoxyribonucleoproteins (RNP and DNP) of various origin differ significantly from their environments in the experimental test tube. Thus, studies of conformation of the nucleic acids in situ appear to be the order of the day.

Keywords

Permeability Hydration Dehydration Nucleoside Guanosine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, K., Beyreuther, K., Fanning, E., Geissler, N., Gronenborn, B., Klemm, A., Muller-Hill, B., Pfahl, M., and Schmitz, A., 1972, How lac repressor binds to DNA, Nature (Lond.) 237, 322.Google Scholar
  2. Akimenko, N. M., Djakowa, E. B., Evdokimov, Y. M., Frisman, E. V., and Varshaysky, Y. M., 1973, Viscosimetric study on compact form of DNA in water-salt solutions containing polyethylene glycol, FEBS (Fed. Eur. Biochem. Soc.) Leu. 38, 61.Google Scholar
  3. Alberts, B. M., Frey, L., and Delius, H., 1972, Isolation and characterization of gene 5 protein of filamentous bacterial viruses, J. Mol. Biol. 68, 139.PubMedGoogle Scholar
  4. Allen, F. S., and van Holde, K. E., 1971, Dichroism of TMV in pulsed electric fields, Biopolymers 10, 865.PubMedGoogle Scholar
  5. Anderegg, J. W., Geil, P. H., Beeman, W. W., and Kaesberg, P., 1961, An X-ray scattering investigation of wild cucumber mosaic virus and a related protein, Biophys. J. 1, 657.PubMedGoogle Scholar
  6. Anderegg, J. W., Wright, U., and Kaesberg, P., 1963, An X-ray scattering study of bromegrass mosaic virus, Biophys. J. 3, 175.PubMedGoogle Scholar
  7. Andriashvili, I. A., Dobrov, E. N., and Tikchonenko, T. I., 1972, Influence of low ionic strength and solute on the Sd phage stability and melting of intraphage DNA, Biokhimia 37, 1251.Google Scholar
  8. Andronikova, M. L., Velikodvorskaya, G. A., Tchruni, F. N., and Tikchonenko, T. I., 1974, The biological effects of chemical modification of the intraphage DNA by Omethylhydroxylamine, Mol. Biol. (Moscow) 8, 3.Google Scholar
  9. Asbeck, F., Beyreuther, K., Köhler, H., von Wettstein, G., and Braunitzer, G., 1969, Virus proteins, IV: The constitution of the coat protein of the fd phage, HoppeSeyler Z. Physiol. Chem. 350, 1047.PubMedGoogle Scholar
  10. Bachrach, H. L., 1964, Foot and mouth disease virus: Structure and mechanism of degradation as deduced from absorbance-temperature relationships, J. Mol. Biol. 8, 348.PubMedGoogle Scholar
  11. Bachrach, H. L., 1965, Foot and mouth disease virus: Structural changes during reaction with cations and formaldehyde as deduced from absorbance measurements, Virology 25, 532.PubMedGoogle Scholar
  12. Bachrach, U., and Friedmann, A., 1967, Purification and some possible functions of internal proteins from coliphage T.2, Biochem. Biophys. Res. Commun. 26, 596.PubMedGoogle Scholar
  13. Bancroft, J. B., 1970, The self-assembly of spherical plant viruses, Adv. Virus Res. 16, 99.PubMedGoogle Scholar
  14. Bancroft, J. B., Hiebert, E., Rees, M. W., and Markham, R., 1968a, Properties of cowpea chlorotic mottle virus, its protein and nucleic acid, Virology 34, 224.PubMedGoogle Scholar
  15. Bancroft, J. B., Wagner, G. W., and Bracker, C. E., 1968b, The self-assembly of a nucleic acid free pseudo-top component for a small spherical virus, Virology 36, 146.PubMedGoogle Scholar
  16. Bancroft, J. B., Hiebert, E., and Bracker, C. F., 1969, The effects of various polyanions on shell formation of some spherical viruses, Virology 39, 924.PubMedGoogle Scholar
  17. Basu, S., 1971, Binding and interaction of acridine orange with intraphage DNA, Biochim. Biophys. Acta 254, 48.PubMedGoogle Scholar
  18. Basu, S., and Das Gupta, N. N., 1967, Spectrophotometric investigation of DNA in the ultraviolet, Biochim. Biophys. Acta 145, 391.PubMedGoogle Scholar
  19. Bawden, F. C., and Kleczkowski, A., 1959a, Photoreactivation of nucleic acid from tobacco mosaic virus, Nature (Lond.) 183, 503.Google Scholar
  20. Bawden, F. C., and Kleczkowski, A., 19596, Some properties of decomposition products of potato virus X, Virology 7, 375.Google Scholar
  21. Belych, R. A., and Krivissky, A. S., 1966, Mutagenic action of nitrous acid on the 6X174 phage infectious DNA, Proc. Moscow Sci. Assoc. (Russ.) 22, 26.Google Scholar
  22. Belych, R. A., Krivissky, A. S., and Tchernik, T. P., 1968, Comparison of mutagenic action of UV light on ¢X174 phage and its infectious DNA, Genetika 4, 62.Google Scholar
  23. Bendet, I., 1963, Biophysical characterization of bacteriophage nucleic acid. Adv. Virus Res. 10, 65.PubMedGoogle Scholar
  24. Bendet, I., and Mayfield, J. E., 1967, Ultraviolet dichroism of fd bacteriophage, Biophys. J. 7, 111.PubMedGoogle Scholar
  25. Bendet, I., Goldstein, D. A., and Lauffer, M. A., 1960, Evidence for internal organization of nucleic acid in T2 bacteriophage, Nature, (Lond.) 187, 781.Google Scholar
  26. Bendich, A., and Rosenkranz, G., 1963, Some thoughts on the double-stranded model of DNA, Progr. Nucleic Acid Res. 1, 219.Google Scholar
  27. Bishop, W. H., Quiocho, F. A., and Richards, F. M., 1966, The removal and exchange of metal ions in cross-linked crystals of carboxypeptidase-A, Biochemistry 5, 4077.Google Scholar
  28. Bode, O., and Paul, H. L., 1955, Elektronmikroskopische Untersuchungen über Kartoffel-Viren. I. Vermessungen an Teilchen des Kartoffel-X-Virus, Biochim. Biophys. Acta 16, 343.PubMedGoogle Scholar
  29. Boedtker, H., 1968, Dependence of the sedimentation coefficient on molecular weight of RNA after reaction with formaldehyde, J. Mol. Biol. 35, 61.PubMedGoogle Scholar
  30. Boeye, A., 1959, Induction of a mutation in poliovirus by nitrous acid, Virology 9, 691.PubMedGoogle Scholar
  31. Bonhoeffer, F., and Schachman, H. K., 1960, Studies on the organization of nucleic acids within nucleoproteins, Biochem. Biophys. Res. Commun. 2, 366.Google Scholar
  32. Bosch, L., Bonnet-Smits, A., and van Duin, J., 1967, In situ breakage of turnip yellow mosic virus RNA and in situ aggregation of the fragments, Virology 31, 453.PubMedGoogle Scholar
  33. Bouley, I. P., and Hirth, L., 1968, Action de la formamide sur le virus de la mosaique jaune du navef: Obtention de capsides arificielles, C. R. Helod. Sennces Acad. Sci. Ser. D Sci. Nat. 266, 430.Google Scholar
  34. Bourgeoi, S., 1972, Gene transcription of reproduction tissue, in “Karolinska Symposia on Research Methods in Reproductive Endocrinology,” 5th Symposium, p. 178.Google Scholar
  35. Boy de la Tour, E., and Kellenberger, E., 1965, Aberrant forms of the T-even phage head, Virology 27, 222.PubMedGoogle Scholar
  36. Bradley, D. E., 1965, The morphology and physiology of bacteriophages as revealed by the electron microscope, J. R. Microscop. Soc. 84, (3), 257–316.Google Scholar
  37. Bradley, D. E., 1967, Ultrastructure of bacteriophages and bacteriocins, Bacteriol. Rev. 31, 230.PubMedGoogle Scholar
  38. Brandes, J., and Bercks, R., 1965, Gross morphology and serology as a basis for classification of elongated plant viruses, Adv. Virus Res. 11, 1.PubMedGoogle Scholar
  39. Brown, G. D., and Zubay, G., 1960, Physical properties of the soluble RNA of Escherichia coli., J. Mol. Biol. 2, 287.Google Scholar
  40. Brunner, W. C., and Maestre, M. F., 1974, Circular dichroism of films of polynucleotides, Biopolymers 13, 345.PubMedGoogle Scholar
  41. Buckingham, R. H., and Danchin, A., 1973, Fluorescence of tryptophanyl-tRNAr`’ from E. coli: An interaction between the indole and tRNA and its dependence on tRNA conformation, FEBS (Fed. Eur. Biochem. Soc.) Lett. 30, 236.Google Scholar
  42. Budowsky, E. L., Sherban, T. P., Krivissky, A. S., and Sverdlov, E. D., 1972, The effect of mutagenic agents on phage US2 and its infectious RNA. IV. The effect of o-methylhydroxylamine, Genetika 8, 10, 63–73.Google Scholar
  43. Bush, C. A., and Scheraga, H. A., 1967, Optical rotatory dispersion and RNA base pairing in ribosomes and in tobacco mosaic virus, Biochemistry 6, 3036.PubMedGoogle Scholar
  44. Cancellieri, A., Frontali, C., and Gratton, E., 1974, Dispersion effect on turbidimetric size measurement, Biopolymers 13, 735.Google Scholar
  45. Cantor, C. R., and Tinoco, I., Jr., 1965, Absorption and optical rotatory dispersion of seven trinucleoside diphosphates, J. Mol. Biol. 13, 65.PubMedGoogle Scholar
  46. Cantor, C. R., Jaskunas, S. R., and Tinoco, I., Jr., 1966, Optical properties of ribonucleic acid predicted from oligomers, J. Mol. Biol. 20, 39.PubMedGoogle Scholar
  47. Carpenter, J. M., and Kleczkowski, A., 1969, The absence of photoreversible pyrimidine dimers in the RNA of ultraviolet-irradiated tobacco mosaic virus, Virology 39, 542.PubMedGoogle Scholar
  48. Caspar, D. L. D., 1956, Radial density distribution in the tobacco mosaic virus particle, Nature (Lond.) 177, 928.Google Scholar
  49. Caspar, D. L. D., 1962, Physical Principals in the construction of regular viruses, Cold Spring Harbor Symp. Quant. Biol. 27, 1.PubMedGoogle Scholar
  50. Caspar, D. L. D., 1963, Assembly and stability of the tobacco mosaic virus particle, Adv. Protein Chem. 18, 37.PubMedGoogle Scholar
  51. Caspar, D. L. D., and Klug, A., 1963, “Viruses, Nucleic Acid and Cancer,” Williams & Wilkins, Baltimore.Google Scholar
  52. Chang, C., Weiskopf, M., and Li, H. J., 1973, Conformational studies of nucleoprotein circular dichroism of deoxyribonucleic acid base pairs bound by polylysine, Biochemistry 12, 3028.PubMedGoogle Scholar
  53. Chang, K. Y., and Carr, C. W., 1968, The binding of calcium with deoxyribonucleic acid and deoxyribonucleic acid-protein complexes, Biochim. Biophys. Acta 157, 127.Google Scholar
  54. Cheng, P., 1968, Optical rotatory dispersion, tryptophan location, and base distribution in tobacco mosaic virus, Biochemistry 7, 3367.PubMedGoogle Scholar
  55. Chaproniere-Rickenberg, D. M., Mahler, H. R., and Fraser, D., 1964, The interaction of DNA and internal protein from coliphage T2, Virology 3, 96.Google Scholar
  56. Cohen, P., and Kidson, C., 1968, Conformational analysis of DNA-poly L-lysine complexes by optical rotatory dispersion, J. Mol. Biol. 35, 241.PubMedGoogle Scholar
  57. Cole, A., and Langley, R., 1963, Study of the radiosensitive structure of T2 bacteriophage using low energy electron beams, Biophys. J. 3, 189.PubMedGoogle Scholar
  58. Cram, L. S., and Deering, R. A.,. 1970, Ultraviolet inactivation dichroic ratio of oriented fd bacteriophage, Biophys. J. 10, 413.PubMedGoogle Scholar
  59. Crawford, L. V., 1966, A minute virus of mice, Virology 29, 605.PubMedGoogle Scholar
  60. Cummings, D. J., and Wanko, T., 1963, An electron microscopic study of T2 bacteriophage in thin sections, J. Mol. Biol. 7, 658.PubMedGoogle Scholar
  61. Cummings, D. J., Chapman, V. A., and De Long, S. S., 1965, An electron microscopic study of À and Àdg bacteriophage in thin sections, J. Mol. Biol. 14, 418.PubMedGoogle Scholar
  62. Damirdagh, I. S., and Shepherd, R. J., 1970, Some of the chemical properties of the tobacco etch virus and its protein and nucleic acid components, Virology 40, 84.PubMedGoogle Scholar
  63. Davidson, B., and Fasman, G., 1969, The double-stranded polyadenylic acid-poly-L-lysine complex. A conformational study and characterization, Biochemistry 8, 4116.PubMedGoogle Scholar
  64. Day, L. A., 1966, Protein conformation in fd bacteriophage as investigated by optical rotatory dispersion, J. Mol. Biol. 15, 395.PubMedGoogle Scholar
  65. Day, L. A., 1969, Conformations of single-stranded DNA and coat protein in fd bac- teriophage as revealed by ultraviolet absorption spectroscopy, J. Mol. Biol. 39, 265.PubMedGoogle Scholar
  66. Day, L. A., 1973, Circular dichroism and ultraviolet absorption of a deoxyribonucleic acid-binding protein of filamentous bacteriophage, Biochemistry 12, 5329.PubMedGoogle Scholar
  67. Dembo, A., Dobrov, E. N., Lednev, V., Tikchonenko, T. I., and Feigin, L. A., 1965, About packing of DNA in the head of DD VII, T2 and Sd phages, Biofizika 10, 404.Google Scholar
  68. Dityatkin, S. Y., Danileytchenko, V. V., Zavilgelsky, G. V., and Ilyashenko, B. N., 1967, Comparison of UV lightsensitivity of 1v7 and T7 phages and their infectious DNA, Genetika 11, 87.Google Scholar
  69. Dobrov, E. N., Andriashvili, I. A., and Tikchonenko, T. I., 1972a, The optical rotary study of Sd phage in low ionic strength solution, Biokhimia 37, 1088.Google Scholar
  70. Dobrov, E. N., Kust, S. V., and Tikchonenko, T. I., 1972b, The structure of single-stranded virus RNA in situ. A study of absorption spectra and optical rotatory dispersion of tobacco mosaic virus and potato virus X preparations, J. Gen. Virol. 6, 161Google Scholar
  71. Dobrov, E. N., Mazhul, L. A., Kust, S. V., and Tikchonenko, T. I., 1973, A study of the effect of ethylene glycol on some helical plant viruses, Mol. Biol. (Moscow) 7, 254.Google Scholar
  72. Dobrov, E. N., Lyaser, P. M., and Kust, S. V., 1974, Some optical properties of dolihos mosaic virus, in “Structure and Functions of Nucleic Acids and Nucleoproteins,” Thesis of A. N. Belozersky Symposium Jan. 29-Feb. 11, 1974, Moscow State University, Moscow.Google Scholar
  73. Dore, E., Frontali, C., and Gratton, E., 1972, Physico-chemical description of a condensed form of DNA, Biopolymers 11, 443.PubMedGoogle Scholar
  74. Dore, E., Frontali, C., and Notargiacomo, S., 1973, Electron microscopic observations of DNA condensates at low pH values, J. Mol. Biol. 78, 391.PubMedGoogle Scholar
  75. Dorman, B. P., and Maestre, M. F., 1973, Experimental differential light-scattering correction to the circular dichroism of bacteriophage T2, Proc. Natl. Acad. Sci. USA 70, 255.PubMedGoogle Scholar
  76. Doty, P., and Steiner, R. F., 1950, Light scattering and spectrophotometry of colloidal solutions, J. Chem. Phys. 18, 1211–1220.Google Scholar
  77. Doty, P., Boedtker, H., Fresco, J., Haselkorn, R., and Litt, M., 1959, Secondary structure in ribonucleic acids, Proc. Natl. Acad. Sci. USA 45, 482.PubMedGoogle Scholar
  78. Dunn, D., and Smith, J. D., 1958, Abstr. 4th Interntl. Congr. Biochem. Vienna, p. 72.Google Scholar
  79. Dusenbery, D. A., and Uretz, R. B., 1972, The interaction of acridine dyes with the densely packed DNA of bacteriophage, Biophys. J. 12, 1056.PubMedGoogle Scholar
  80. Eiserling, F. A., and Dickson, R. C., 1972, Assembly of viruses, Annu. Rev. Biochem. 41, 467.PubMedGoogle Scholar
  81. Eisinger, J., 1966, Information Exchange Group, N 7 (JEG-7).Google Scholar
  82. Englander, S. W., and Epstein, H. T., 1957, Optical methods for measuring nucleoprotein and nucleic acid concentration, Arch. Biochem. Biophys. 68, 144.PubMedGoogle Scholar
  83. Evdokimov, Y. M., Platonov, A. L., Tikchonenko, A. S., and Varshaysky, Y. M., 1972, A compact form of double-stranded DNA in solution, FEBS (Fed. Eur. Biochem. Soc.) Lett. 23, 180.Google Scholar
  84. Evdokimov, Y. M., Akimenko, N. M., Gluchova, N. E, Tikchonenko, A. S., and Varshaysky, Y. M., 1973, Formation of the compact form of double-stranded DNA in solution in the presence of polyethylene glycol, Mol. Biol. (Moscow) 7, 151.Google Scholar
  85. Evdokimov, Y. M., Akimenko, N. M., Gluchova, N. E., and Varshaysky, Y. M., 1974, DNA compact from in solution I., Mol. Biol. (Moscow) 8, 396.Google Scholar
  86. Falk, M., Hartman, K. A., and Lord, R. C., 1962, Hydration of deoxyribonucleic acid, J. Am. Chem. Soc. 84, 3843.Google Scholar
  87. Fasman, G. D., Schaffhausen, B., Goldsmith, L., and Adler, A., 1970, Conformational changes associated with f-1 histone deoxyribonucleic acid complexes. Biochemistry 9, 2814.PubMedGoogle Scholar
  88. Finch, J. G., 1965, Preliminary X-ray diffraction studies on tobacco rattle and barley stripe mosaic viruses, J. Mol. Biol. 12, 612.Google Scholar
  89. Finch, J. T., and Klug, A., 1966, Arrangement of protein subunits and the distribution of nucleic acid in turnip yellow mosaic virus, J. Mol. Biol. 15, 344.PubMedGoogle Scholar
  90. Finch, J. T., and Klug, A., 1967, Structure of broad bean mottle virus. I. Analysis of electron micrographs and comparison with turnip yellow mosaic virus and its top component, J. Mol. Biol. 24, 289.PubMedGoogle Scholar
  91. Finch, J. T., Klug, A., and van Regenmortel, M. H. V., 1967a, The structure of cucumber mosaic virus, J. Mol. Biol. 24, 303.PubMedGoogle Scholar
  92. Finch, J. T., Leberman, R., and Berger, J. E., 1967b, Structure of broad bean mottle virus. II. X-ray diffraction studies, J. Mol. Biol. 27, 17.PubMedGoogle Scholar
  93. Fischbach, F. A., Harrison, P. M., and Anderegg, J. W., 1965, An X-ray scattering study of the bacterial virus R17, J. Mol. Biol. 13, 638.Google Scholar
  94. Fraenkel-Conrat, H., 1954, Reactio of nucleic acid with formaldehyde, Biochim. Biophys. Acta 15, 308.Google Scholar
  95. Fraenkel-Conrat, H., 1969, “The Chemistry and Biology of Viruses,” Academic Press, New York.Google Scholar
  96. Fraenkel-Conrat, H., and Colloms, M., 1967, Reactivity of tobacco mosaic virus and its protein toward acetic anhydride, Biochemistry 6, 2740.PubMedGoogle Scholar
  97. Fraenkel-Conrat, H., and Singer, B., 1964, Reconstitution of tobacco mosaic virus. IV. Inhibition of enzymes and other proteins, and use of polynucleotides, Virology 23, 354.PubMedGoogle Scholar
  98. Frank, H., and Day, L. A., 1970, Electron microscopic observations on fd bacteriophage, its alkali denaturation products and its DNA, Virology 2, 144.Google Scholar
  99. Franklin, R., I955a, Structure of tobacco mosaic virus, Nature (Lond.) 175, 379.Google Scholar
  100. Franklin, R., 19556, Structural resemblance between Schramm’s repolymerised A-protein and tobacco mosaic virus, Biochim. Biophys. Acta 18, 313.Google Scholar
  101. Franklin, R., 1956a, Location of the ribonucleic acid in the TMV particle, Nature (Lond.) 177, 928.Google Scholar
  102. Franklin, R., 1956b, X-ray diffraction studies of cucumber virus 4 and three strains of tobacco mosaic virus, Biochim. Biophys. Acta 19, 203.PubMedGoogle Scholar
  103. Franklin, R. and Klug, A., 1956, The nature of the helical groove on the tobacco mosaic virus particle, Biochim. Biophys. Acta 19, 403.PubMedGoogle Scholar
  104. Franklin, R., Klug, A., and Holmes, K. C., 1957, in “Nature of Viruses” (C.E.W. Wolstenholme and E.C.P. Miller, eds.), p. 39, Churchill, London.Google Scholar
  105. Franklin, R., Caspar, D. L. D., and Klug, A., 1959, Problems and progress 1908–1958, in “Plant Pathology” (C. S. Holton, ed.), p. 444, University of Wisconsin Press, Madison, Wisc.Google Scholar
  106. Fraser, R. D. B., 1952, Infra-red dichroism nucleoprotein tobacco mosaic virus, Nature (Lond.) 170, 490.Google Scholar
  107. Friedman, S., and Ts’o, P. P., 1971, Interaction of poly-L-tyrosine with nucleic acids. I. Formation of complexes, Biochemistry 10, 3099.PubMedGoogle Scholar
  108. Frisman, E. V., Vorobjev, V. I., Yanovskaya, N. K., and Shagina, L. V., 1963, The DLP study of molecular structure of ribonucleic acid, Biokhimia 28, 137.Google Scholar
  109. Fuller, W., 1961, Two-stranded helical configurations for ribonucleic acid, J. Mol. Biol. 3, 175.PubMedGoogle Scholar
  110. Fuller, W., Wilkins, M. H. F., Wilson, H. R., and Hamilton, L. D., 1965, The molecular configuration of deoxyribonucleic acid. IV. X-ray diffraction study of the A form, J. Mol. Biol. 12, 60.PubMedGoogle Scholar
  111. Furuse, K., and Watanabe, I., 1971, Effects of ultraviolet light (UV) irradiation on RNA phage in H2O and in D2O, Virology 46, 171.PubMedGoogle Scholar
  112. Gabbay, E. J., Sanford, K., and Baxter, C. S., 1972, Specific interaction of peptides with nucleic acids, Biochemistry 11, 3429.PubMedGoogle Scholar
  113. Gabbay, E. J., Sanford, K., Baxter, C. S., and Kapicak, L., 1973, Specific interaction of peptides with nucleic acids. Evidence for a “selective bookmark” recognition hypothesis, Biochemistry 12, 4021.PubMedGoogle Scholar
  114. Gabler, R., and Bendet, I., 1972, Comparison of the UV flow dichroism spectra of TMV and several of its mutants, Biopolymers 11, 2393.PubMedGoogle Scholar
  115. Gabrilovich, I. M., Polupanov, V. S., and Anisimova, N. I., 1968, Macromolecular’ structure of phage Klebsiella DNA, Mol. Biol. (Moscow) 2, 155.Google Scholar
  116. Gabrilovich, I. M., Romanovskaya, L. N., Zentchenko, S. A., and Resnikova, I. V., 1970, The interaction of the acridine dyes with DNA in solution and inside phage particles, Mol. Biol. (Moscow) 4, 324.Google Scholar
  117. Gellert, M., and Davies, D. R., 1964, Organization of DNA in bacteriophage T4, J. Mol. Biol. 8, 341.PubMedGoogle Scholar
  118. Gendon, Y. Z., 1966, Mutagenic and inactivating effect of hydroxylamine in treatment of infectious RNA and native polyomielitis virus, Vopr. Virusol. 6, 724.Google Scholar
  119. Ginoza, W., 1958, Kinetics of heat inactivation of ribonucleic acid of TMV, Nature (Lond.) 181, 958.Google Scholar
  120. Goddard, J., Streeter, D., Weber, C., and Gordon, M. P., 1966, Studies on the inactiva- tion of tobacco mosaic virus by ultraviolet light, Photochem. Photobiol. 5, 213–222.PubMedGoogle Scholar
  121. Gomatos, P. J., Klug, R. M., and Tamm, I., 1964, Enzymic synthesis of RNA with reovirus RNA as template. I. Characteristics of the reaction catalyzed by the RNA polymerase from Escherichia coli, J. Mol. Biol. 9, 193.Google Scholar
  122. Gordon, D. J., 1972, Mie scattering by optically active particles, Biochemistry 11, 413.PubMedGoogle Scholar
  123. Gordon, D. J., and Holzwarth, G., 1971, Artifacts in the measured optical activity of membrane suspensions, Arch. Biochem. Biophys. 142, 481.PubMedGoogle Scholar
  124. Gorin, A. S., Spitkovsky, D. M., Tikchonenko, T. I., and Tseytlin, P. I., 1967, The secondary structure of DNA in phage particles, Biochim. Biophys. Acta 134, 490.Google Scholar
  125. Gottesfeld, J. M., Calvin, M., Cole, R. D., Idgaloff, D. M., Moses, V., and Vaughan, W., 1972, An investigation of specific interactions of deoxyribonucleic acid and lysine-rich (F1) histone preparations, Biochemistry 11, 1422.PubMedGoogle Scholar
  126. Gratton, E., 1971, Method for the automatic correction of scattering in absorption spectra by using the integrating sphere, Biopolymers 10, 2629.PubMedGoogle Scholar
  127. Green, G., and Mahler, H. R., 1970, Comparative study of polyribonucleotides in aqueous and glycol solutions, Biochemistry 9, 368.PubMedGoogle Scholar
  128. Greve, J., and Blok, J., 1973, Transient birefringence of T-even bacteriophages. I. T4B in the absence of tryptophan and fiberless T4 particles, Biopolymers 12, 2607–2622.PubMedGoogle Scholar
  129. Griffith, J. T., and Kornberg, A., 1972, in “Membrane Research” (C. F. Fox, ed.), p. 281, Academic Press, New York.Google Scholar
  130. Grossman, L., Levine, S., and Allison, W. S., 1961, The reaction of formaldehyde with nucleotides and T2 bacteriophage DNA, J. Mol. Biol. 3, 47.PubMedGoogle Scholar
  131. Harrison, B. D., Finch, J. T., Gibbs, A. J., Hollings, M., Shepherd, R. J., Valenta, V., and Wetter, C., 1971, Sixteen groups of plant viruses, Virology 45, 356.PubMedGoogle Scholar
  132. Hart, R. G., 1955, Electron-microscopic evidence for the localization of ribonucleic acid in the particles of TMV, Proc. Natl. Acad. Sci. USA 1, 261.Google Scholar
  133. Haselkorn, R., 1962, Studies on infectious RNA from turnip yellow mosaic virus, J. Mol. Biol. 4, 357.PubMedGoogle Scholar
  134. Haselkorn, R., and Doty, P., 1961, The reaction of formaldehyde with polynucleotides, J. Biol. Chem. 236, 2738.PubMedGoogle Scholar
  135. Hanes, M., Garrett, R. A., and Gratzer, W. B., 1970, Structure of nucleic acid-poly Haynes, complexes, Biochemistry 9, 4410.Google Scholar
  136. Heisenberg, M., 1966, Formation of defective bacteriophage particles by fr amber mutants, J. Mol. Biol. 17, 136.PubMedGoogle Scholar
  137. Hélène, C., 1971, Role of aromatic amino-acid residues in the binding of enzymes and proteins to nucleic acids, Nat. New Biol. 234, 120.PubMedGoogle Scholar
  138. Hélène, C., and Dimicoli, J.-L., 1972, Interaction of oligopeptides containing aromatic amino acids with nucleic acids. Fluorescence and proton magnetic resonance studies, FEBS (Fed. Eur. Biochem. Soc.) Leu. 26, 6.Google Scholar
  139. Hélène, C., Dimicoli, J.-L., and Brun, F., 197la, Binding of tryptamine and 5hydroxytryptamine (serotonin) to nucleic acids. Fluorescence and proton magnetic resonance studies, Biochemistry 10, 3802.Google Scholar
  140. Hélène, C., Montenay-Garestier, A., and Dimicoli, J.-L., 1971b, Interactions of tyrosine and tyramine with nucleic acids and their components. Fluorescence, nuclear magnetic resonance and circular dichroism studies, Biochim. Biophys. Acta 254, 349.PubMedGoogle Scholar
  141. Henkens, R. W., and Middlebrook, J. L., 1973, Optical and hydrodynamic studies of the structure of bacteriophage f2, Biochemistry 12, 2910.PubMedGoogle Scholar
  142. Hiebert, E., Bancroft, J. B., and Bracker, C. E., 1968, The assembly in vitro of some small spherical viruses, hybrid viruses, and other nucleoproteins, Virology 34, 492.PubMedGoogle Scholar
  143. Hill, J. H., and Shepherd, R. J., 1972, Molecular weights of plant virus coat proteins by polyacrylamide gel electrophoresis, Virology 47, 817.PubMedGoogle Scholar
  144. Hoffmann-Berling, V. H., Marvin, D. A., and Dürwald, H., 1963, Ein fädiger DNS-phage (fd) und ein sphärischer RNS-phage (fr), wirtsspezifisch für mämmliche Stämme von E. coli. 1. Präparation und chemische Eigenschaften von fd und fr, Z. Naturf. Orsch 18B, 876.Google Scholar
  145. Hohn, T., 1969, Role of RNA in the assembly process of bacteriophage fr, J. Mol. Biol. 43, 191.PubMedGoogle Scholar
  146. Hohn, T., and Hohn, B., 1970, Structure and assembly of simple RNA bacteriophages, Adv. Virus Res. 16, 43.PubMedGoogle Scholar
  147. Holmes, K. C., and Franklin, R. E., 1958, The radial density distribution in some strains of tobacco mosaic virus, Virology 6, 328.PubMedGoogle Scholar
  148. Holzwarth, G., Gordon, D. G., McGinness, J. E., Dorman, B. P., and Maestre, M. F., 1974, Mie scattering contributions to the optical density and circular dichroism of T2 bacteriophage, Biochemistry 13, 126.PubMedGoogle Scholar
  149. Hosszu, J. L., and Rahn, R. O., 1967, Thymine dimer formation in DNA between 25°C and 100°C, Biochem. Biophys. Res. Commun. 29, 327.PubMedGoogle Scholar
  150. Huang, C. W., and Gordon, M. P., 1972, Photoreactivation of tobacco mosaic virus and potato virus X ribonucleic acid inactivated by acetone-sensitized photoreactivation, Photochem. Photobiol. 15, 493.PubMedGoogle Scholar
  151. Huang, C. W., and Gordon, M. P., 1974, The formation of photoreversible cyclobutane-type pyrimidine dimers in ultraviolet-irradiated potato virus X, Photochem. Photobiol. 19, 269.Google Scholar
  152. Hurter, J., Gordon, M. P., Kirwan, J. P., and McLaren, A. D., 1974, In vitro photoreactivation of ultraviolet-inactivated ribonucleic acid from tobacco mosaic virus, Photochem. Photobiol. 19, 185.PubMedGoogle Scholar
  153. Huxley, H. E., and Zubay, G., 1961, Preferential staining of nucleic acid-containing structures for electron microscopy, J. Biophys. Biochem. Cytol. 11, 273–296.PubMedGoogle Scholar
  154. Ikehara, K.,Obata, Y., Utyama, H., and Kurata, M., 1973, Bull. Inst. Chem. Res. Kyoto Univ. 51, 140.Google Scholar
  155. Inman, R. B., and Jordan, D. O., 1960, The UV-absorption of calf-thymus DNA, Biochim. Biophys. Acta 42, 530.PubMedGoogle Scholar
  156. Inners, D., and Bendet, I. J., 1969, Thermal stability of T2 DNA in situ, Virology 38, 269.Google Scholar
  157. Inoue, S., and Ando, T., 1970, Interaction of clupeine with deoxyribonucleic acid. II. Optical rotatory dispersion studies, Biochemistry 9, 395.PubMedGoogle Scholar
  158. Isenberg, H., Cotter, R. I., and Gratzer, N. B., 1971, Secondary structure and interaction of RNA and protein in a bacteriophage, Biochim. Biophys. Acta 232, 184.PubMedGoogle Scholar
  159. Jacobsen, J., and Wang, J. C., 1974, On the possibility of intercalation of aromatic amino acid residues into double-stranded DNA helix, Biochim. Biophys. Acta 335, 49.Google Scholar
  160. Jacobsen, M. F., and Baltimore, D., 1968, Morphogenesis of poliovirus. I. Association of the virus RNA with coat protein, J. Mol. Biol. 33, 368.Google Scholar
  161. Jonard, G., 1972, Ph.D. Thesis, University of Strasburg, France.Google Scholar
  162. Jonard, G., and Hirth, L., 1966, Action de l’urée sur le virus de la mosaique jaune de navet: Formation de capsides artificielles, Ct. R. Hebd. Seances Acad. Sci. Ser. D Sci. Nat. 236, 1909.Google Scholar
  163. Jonard, G., Ralijoana, D., and Hirth, L., 1967, Action de l’urée sur la virus de la mosaique jaune du navet. Properties du RNA obtenu lors de la formation de capsides artificielles par M.U, Ct. R. Hebd. Seances Acad. Sci. Ser. D. Sci. Nat. 264, 2694–2698.Google Scholar
  164. Jonard, G., Witz, J., and Hirth, L., 1972, Formation of nucleoprotein complexes from dissociated turnip yellow mosaic virus RNA and capsids at low pH: Preliminary observations, J. Mol. Biol. 67, 165.PubMedGoogle Scholar
  165. Jordan, C. F., Lerman, L. S., and Venable, J. H., Jr., 1972, Structure and circular dichroism of DNA in concentrated polymer solutions, Nat. New Biol. 236, 67.PubMedGoogle Scholar
  166. Kaper, J. M., 1968, The small RNA viruses of plants, animals and bacteria. A. Physical properties, in “Molecular Basis of Virology” (H. Fraenkel-Conrat, ed.), p. 1, Academic Press, New York.Google Scholar
  167. Kaper, J. M., 1969, Nucleic acid-protein interactions in turnip yellow mosaic virus, Science (Wash., D.C.) 166, 248.Google Scholar
  168. Kaper, J. M., 1971, Studies on the stabilizing forces of simple RNA viruses. I. Selective interference with protein-RNA interactions in turnip yellow mosaic virus, J. Mol. Biol. 56, 259.PubMedGoogle Scholar
  169. Kaper, J. M., 1972, RNA viruses: Replication and structure, FEBS (Fed. Eur. Biochem. Soc.) Symp. 27, 19.Google Scholar
  170. Kaper, J. M., 1973, Arrangement and identification of simple isometric viruses according to their dominating stabilizing interactions, Virology 55, 299.PubMedGoogle Scholar
  171. Kaper, J. M., and Geelen, J. L. M. C., 1971, Studies on the stabilizing forces of simple RNA viruses. II. Stability, d issociation and reassembly of cucumber mosaic virus, J. Mol. Biol. 56, 277.PubMedGoogle Scholar
  172. Kaper, J. M., and Halperin, J. E., 1965, Alkaline degradation of turnip yellow mosaic virus. II. In situ breakage of the ribonucleic acid, Biochemistry 4, 2434.Google Scholar
  173. Kaper, J. M., and Jenifer, F. G., 1965, Studies on the interaction of p-chloromercuribenzoate with turnip yellow mosaic virus. III. Involvement of the ribonucleic acid, Arch. Biochem. Biophys. 112, 331.PubMedGoogle Scholar
  174. Kaper, J. M., and Jenifer, F. G., 1967, Studies on the interaction of p-mercuribenzoate with turnip yellow mosaic virus. IV. Conformational change, exposure of buried prototropic groups, and p-H-induced degradation, Biochemistry 6, 440.PubMedGoogle Scholar
  175. Kaper, J. M., and Jenifer, F. G., 1968, Studies on the interaction of p-mercuribenzoate with turnip yellow mosaic virus. V. Induced ribonuclease sensitivity and degradation of the virion, Virology 5, 71.Google Scholar
  176. Kaper, J. M., Diener, T. O., and Scott, H. A., 1965, Some physical and chemical properties of cucumber mosaic virus (strain Y) and of its isolated ribonucleic acid, Virology 27, 54.PubMedGoogle Scholar
  177. Kassanis, B., and Kleczkowski, A., 1965, Inactivation of a strain of tobacco necrosis virus and of the RNA isolated from it by UV radiation of different wave-lengths, Photochem. Photobiol. 4, 209.Google Scholar
  178. Katz, L., and Rich, A., 1966, X-ray diffraction study of large phages, Abstr. Biophys. Soc. USA 10th Annu. Meet. Boston, p. 58.Google Scholar
  179. Kausche, G. A., and Hahn, F., 1948, Über die stöchiometrische Farbstoffverbindungen des Tabakmosaikvirusproteins, Z. Naturforsch. 3B, 437–441.Google Scholar
  180. Khromov, I. S., Ogarova, N. L., and Tikchonenko, T. I., 1973, in “Molecular Biology of Viruses,” p. 80, Academy of Medical Sciences & Institute of Virology, Moscow.Google Scholar
  181. Kilkson, R., 1957, Cylindrically averaged electron density distribution in cucumber virus number four, Arch. Biochem. Biophys. 67, 53.PubMedGoogle Scholar
  182. Kilkson, R., and Maestre, M. F., 1962, Structure of T-2 bacteriophage, Nature (Lond.) 195, 494.Google Scholar
  183. Kirby, K. S., 1957, A new method for the isolation of deoxyribonucleic acids: Evidence on the nature of bonds between deoxyribonucleic acid and protein, Biochem. J. 66, 495.PubMedGoogle Scholar
  184. Kislina, O. S., and Tikchonenko, T. I., 1972, Interaction of formaldehyde with intra-phage DNA, Biokhimia 37, 372.Google Scholar
  185. Kisseleva, N. P., and Tikchonenko, T. I., 1972, Kinetics of diamination of Sd phage DNA in situ and in solution by nitrous acid, Biokhimia 37, 562.Google Scholar
  186. Kleczkowski, A., and Govier, D. A., 1969, Action spectrum for inactivation of the infectivity of potato virus X by U.V. radiation, Photochem. Photobiol. 10, 53.PubMedGoogle Scholar
  187. Kleczkowski, A., and McLaren, A. D., 1967, Inactivation of infectivity of RNA of TMV during ultraviolet-irradiation of the whole virus at two wavelengths, J. Gen. Virol. 1, 441.PubMedGoogle Scholar
  188. Klimenko, S. M., Tikchonenko, T. I., and Andreev, V. M., 1967, Packing of DNA in the head of bacteriophage T2, J. Mol. Biol. 23, 523.PubMedGoogle Scholar
  189. Klug, A., and Caspar, D. L. D., 1960, The structure of small viruses, Adv. Virus Res. 7, 225.PubMedGoogle Scholar
  190. Klug, A., and Finch, J. T., 1960, The symmetries of the protein and nucleic acid in turnip yellow mosaic virus: X-ray diffraction studies, J. Mol. Biol. 2, 201.Google Scholar
  191. Klug, A., Holmes, K. C., and Finch, J. T., 1961, X-ray diffraction studies on ribosomes from various sources, J. Mol. Biol. 3, 87.PubMedGoogle Scholar
  192. Klug, A., Finch, J. T., Leberman, R., and Longley, W., I966a, Design and structure of regular virus particles, Ciba Found. Symp. Princ. Biomol. Organ, p. 158.Google Scholar
  193. Klug, A., Longley, W., and Leberman, R., 1966b, Arrangement of protein subunits and the distribution of nucleic acid in turnip yellow mosaic virus. I. X-ray diffraction studies, J. Mol. Biol. 15, 315.PubMedGoogle Scholar
  194. Kochetkov, N. K., and Budowsky, E. I., 1969, The chemical modification of nucleic acids. in “Progress in Nucleic Acid Research” (D. Davidson and W. Cohn eds.), Vol. 9, p. 403, Academic Press, New York.Google Scholar
  195. Kochetkov, N. K., Budowsky, E. I., Sverdlov, E. D., and Symukova, N. A., 1970, “Organic Chemistry of Nucleic Acids,” Chimia, Moscow.Google Scholar
  196. Kotaka, T., and Baldwin, R. L., 1964, Effects of nitrous acid on the dAT copolymer as a template for DNA polymerase, J. Mol. Biol. 9, 323.PubMedGoogle Scholar
  197. Krivissky, A. S., Belych, R. A., and Budowsky, E. I., 1973, Mutagenic and inactivating effects of 0-methylhydroxylamine on bacteriophage çpX174 and its infectious DNA, Genetika 9, 8, 105.Google Scholar
  198. Kuriatkowski, B., Kotarski, J., and Napiorkowska, J., 1973, Photoluminescence studies on the structure of the DNA in situ of phages V~, Bull. Inst. Med. Mor. Gdansk 24, 143.Google Scholar
  199. Kurtz-Fritsch, C., and Hirth, L., 1972, Uncoating of two spherical plant viruses, Virology 47, 385.PubMedGoogle Scholar
  200. Kust, S. V., Dobrov, E. N., and Tikchonenko, T. I., 1972, The investigation of the RNA structure in potato X virus particles, Mol. Biol. (Moscow) 6, 42.Google Scholar
  201. Langridge, R., and Gomatos, P. J., 1963, The structure of RNA: Reovirus RNA and transfer RNA have similar three-dimensional structures which differ from DNA, Science (Wash., D.C.) 141, 694.Google Scholar
  202. Langridge, R., Seeds, W. E., Wilson, H. R., Hooper, C. W., Wilkins, M. H. F., and Hamilton, L. D., 1957, Molecular structure of deoxyribonucleic acid, J. Biophys. Biochem. Cytol. 3, 767.PubMedGoogle Scholar
  203. Langridge, R., Marvin, D. A., Seeds, W. E., Wilson, H. R., Hooper, C. W., Wilkins, M. H. F., and Hamilton, L. D., 1960, The molecular configuration of deoxyribonucleic acid. II. Molecular models and their Fourier transforms, J. Mol. Biol. 2, 38.Google Scholar
  204. Leach, S. J., and Scheraga, H. A., 1960, Effect of light scattering on ultraviolet difference spectra, J. Am. Chem. Soc. 82, 4790.Google Scholar
  205. Lerman, L. S., 1970, A transition to a compact form of DNA in polymer solutions, Proc. Natl. Acad. Sci. USA 68, 1886.Google Scholar
  206. Lerman, L. S., Jordan, C. F., Venable, J. H., and Maniatis, T. P., 1969, A transition to a compact form of DNA, Abstr. Third Interntl. Biophys. Congr. Cambridge, Mass Google Scholar
  207. Li, H. J., Chang, C., and Weiskopf, M., 1973, Thermal denaturation of nucleohistone effects of formaldehyde reaction, Biochemistry 12, 1763.PubMedGoogle Scholar
  208. Litman, R. M., 1961, Genetic and chemical alterations in the transforming DNA of pneumococcus caused by ultraviolet light and by nitrous acid, J. Chim. Phys. Phys. Chim. Biol. 58, 997.Google Scholar
  209. McCleary, L. O., and Gordon, M. P., 1973, Ultraviolet irradiation of potato virus X, its RNA, and a hybrid virus particle: Photoreactivation, kinetic isotope effects and quantum yield of inactivation, Photochem. Photobiol. 18, 9.PubMedGoogle Scholar
  210. McGavin, S., 1971, Models of specifically paired like (homologous) nucleic acid structures, J. Mol. Biol. 55, 293.PubMedGoogle Scholar
  211. McGavin, S., Wilson, H. R., and Barr, G. C., 1966, Intercalated nucleic acid double helices: A stereochemical possibility, J. Mol. Biol. 22, 187.Google Scholar
  212. Maestre, M. F., 1968, Transient electric birefringence studies of T2 bacteriophage and T2 ghost, Biopolymers 6, 415.PubMedGoogle Scholar
  213. Maestre, M. F., 1970, Circular dichroism of DNA films: Reversibility studies, J. Mol. Biol. 52, 543.PubMedGoogle Scholar
  214. Maestre, M. F., and Kilkson, R., 1962, X-ray investigation of M5 and T2 bacteriophages, Nature (Lond.) 193, 366.Google Scholar
  215. Maestre, M. F., and Tinoco, I., Jr., 1967, Optical rotatory dispersion of viruses, J. Mol. Biol. 23, 323.Google Scholar
  216. Maestre, M. F., Gray, D. M., and Cook, R. B., 1971, Magnetic circular dichroism study on synthetic polynucleotides, bacteriophage structure and DNAs, Biopolymers 10, 2537.PubMedGoogle Scholar
  217. Malik, W. U., and Agarwal, S. K., 1967, pH-Metric evidence for the binding of magnesium, manganese and strontium with transfusion gelatin, Ind. J. Chem. 5, l-5.Google Scholar
  218. Manykin, A. A., 1972, Experimental estimation of the time of injection for the T2 phage DNA and analysis of physical mechanism of DNA injection, Ph.D. Thesis, Institute of Virology, Moscow.Google Scholar
  219. Margaretten, W., Morgan, C., Rosenkranz, H. S., and Rose, H. M., 1966, Effect of hydroxyurea on virus development. I. Electron microscopic study of the effect on the development of bacteriophage T4, J. Bacteriol. 91, 823.PubMedGoogle Scholar
  220. Marvin, D. A., 1966, X-ray diffraction and electron microscope studies on the structure of the small filamentous bacteriophage fd, J. Mol. Biol. 15, 8.PubMedGoogle Scholar
  221. Marvin, D. A., and Hohn, B., 1969, Filamentous bacterial viruses, Bacteriol. Rev. 33, 172.PubMedGoogle Scholar
  222. Marvin, D. A., and Schaller, H., 1966, The topology of DNA from the small filamentous bacteriophage fd, J. Mol. Biol. 15, 1.PubMedGoogle Scholar
  223. Marvin, D. A., Spencer, M., Wilkins, M. H. F., and Hamilton, L. D., 1961, The molecular configuration of deoxyribonucleic acid III. X-ray diffraction study of the C form of the lithium salt, J. Mol. Biol. 3, 547.PubMedGoogle Scholar
  224. Marvin, D. A., Wiseman, R. L., and Wachtel, E. J., 1974, Filamentous bacterial viruses. XI. Molecular architecture of the class II (pfl, xf) virion, J. Mol. Biol. 82, 121.PubMedGoogle Scholar
  225. Matheka, H. D., Bachrach, H. L., and Trautman, R., 1966, Highly purified foot-and-mouth disease virus: Optical and biological measurements during zone electrophoresis in a glucose density gradient, Z. Naturforsch. 21B, 774.Google Scholar
  226. Mattern, M., Binder, R., and Cerutti, P., 1972, Cytidine photohydration in R17 RNA, J. Mol. Biol. 66, 201–204.PubMedGoogle Scholar
  227. Matthews, K. S., and Cole, R. D., 1972, Shell formation by capsid protein of f2 bacteriophage, J. Mol. Biol. 65, 1.PubMedGoogle Scholar
  228. Matthews, R. E. F., and Ralph, R. K., 1966, Turnip yellow mosaic virus, Adv. Virus Res. 12, 273.PubMedGoogle Scholar
  229. Mayfield, J. E., and Bendet, I. J., 1970a, Quantitative flow dichroism. I. Correction for disorientation in a solution of rods, Biopolymers 9, 655.PubMedGoogle Scholar
  230. Mayfield, J. E., and Bendet, I. J., 1970b, Quantitative flow dichroism. II. Form dichroism at ultraviolet wavelengths, Biopolymers 9, 669.PubMedGoogle Scholar
  231. Mazurenko, N. N., Budowsky, E. I., and Tikchonenko, T. I., 1972, Early stages of reaction between glyoxal and phage nucleoprotein, Vopr. Virusol. 6, 676.Google Scholar
  232. Mekshenkov, M. I., and Guseynov, R. D., 1971, Interruption of phage T4 chromosome injection into a cell, Mol. Biol. (Moscow) 5, 444.Google Scholar
  233. Miall, S. H., and Walker, I. O., 1968, Circular dichroism of Escherichia coli ribosomes and TMV, Biochim. Biophys. Acta 166, 711.PubMedGoogle Scholar
  234. Michelson, A. M., 1963, “The Chemistry of Nucleosides and Nucleotides,” Academic Press, New York.Google Scholar
  235. Michelson, A. M., Monny, C., and Kapuler, A. M., 1970, Poly-8-bromoguanylic acid, Biochim. Biophys. Acta 217, 7.PubMedGoogle Scholar
  236. Miki, T., and Knight, C. A., 1968, The protein subunit of potato virus X, Virology 36, 168.PubMedGoogle Scholar
  237. Milstein, J. B., and Rossomando, E. T., 1971, Electrooptic studies on the effect of heat treatment on structure in bacteriophage fl, Virology 46, 655.Google Scholar
  238. Ninamishima, Y., Takeya, K., Ohnishi, Y., and Amako, K., 1968, Physicochemical and biological properties of fibrous pseudomonas bacteriophages, J. Virol. 2, 208.Google Scholar
  239. Minchenkova, L. E., Belych, R. A., Dobrov, E. N., and Ivanov, V. I., 1969, Cu+ and Ag+ ions use for the investigation of the DNA structure inside phage particles, Mol. Biol. (Moscow) 3, 441.Google Scholar
  240. Moll, G., 1963, Elektronenmikroskopische Darstellung des DNA-Fadens im Fortsatz eines Coli-Phagen T2, Naturwissenschaften 50, 411–412.Google Scholar
  241. Moody, M. F., 1965, The shape of the T-even bacteriophage head, Virology 26, 567.PubMedGoogle Scholar
  242. Moore, D. S., and Wagner, T. E., 1973, Origins of the differences between the circular dichroism of DNA and RNA: Theoretical calculations, Biopolymers 12, 201.PubMedGoogle Scholar
  243. Moore, D. S., and Wagner, T. E., 1974, Doublehelical DNA and RNA circular dichroism. Calculations on base-sugar phosphate helix interactions, Biopolymers 13, 977.PubMedGoogle Scholar
  244. Nelson, R. G., and Johnson, W. C., 1970, Conformation of DNA in ethylene glycol, Biochem. Biophys. Res. Commun. 41, 211–216.PubMedGoogle Scholar
  245. North, A. C. T., and Rich, A., 1961, X-ray diffraction studies of bacterial viruses, Nature (Lond.) 191, 1242.Google Scholar
  246. Offord, R. E., 1966, Electron microscopic observations on the substructure of tobacco rattle virus, J. Mol. Biol. 17, 370.PubMedGoogle Scholar
  247. Olins, D. E., and Olins, A. L., 1971, Model nucleohistones: The interaction of FI and F2a1 histones with native T7 DNA, J. Mol. Biol. 57, 437.PubMedGoogle Scholar
  248. Olins, D. E., Olins, A. L., and von Hippel, P. H., 1967, Model nucleoprotein complexes: Studies on the interaction of cationic homopolypeptides with DNA, J. Mol. Biol. 24, 157.PubMedGoogle Scholar
  249. Perera, O., and Tikchonenko, T. I., 1969, Study of the phage DNA injection into bacterial cell, Vopr. Med. Khim. 15, 5.Google Scholar
  250. Perham, R. N., and Richards, F. M., 1968, Reactivity and structural role of protein amino groups in TMV, J. Mol. Biol. 33, 795.PubMedGoogle Scholar
  251. Permagorov, V. I., Sladkova, J. A., Velikodvorskaya, G. A., and Tikchonenko, T. I., 1969, Use of dyes for the investigation of structure of DNA in phages, Mol. Biol. (Moscow) 3, 267.Google Scholar
  252. Permagorov, V. I., Debabov, V. G., Sladkova, I. A., and Rebentish, B. A., 1970, Structure of DNA and histones in the nucleohistone, Biochim. Biophys. Acta 199, 556.Google Scholar
  253. Phillips, J. H., Brown, D. M., and Grossman, L., 1966, The efficiency of induction of mutations by hydroxylamine, J. Mol. Biol. 21, 405.Google Scholar
  254. Philipson, K. D., and Sauer, K., 1973, Light-scattering effects on the circular dichroism of chloroplasts, Biochemistry 12, 3454.PubMedGoogle Scholar
  255. Polupanov, V. S., and Cherenkevich, S. N., 1968, Secondary structure of DNA in phage particles, Biofizika 13, 1111.PubMedGoogle Scholar
  256. Pysarevsky, A. N., Gabrilovich, I. M., and Spytkowsky, D. M., 1968, About secondary structure of DNA in phage particles, Biofizika 13, 1101–1113.Google Scholar
  257. Raszka, M., and Mandel, M., 1971,• Interaction of aromatic amino acids with neutral polyadenylic acid, Proc. Natl. Acad. Sci. USA 68, 1190.Google Scholar
  258. Rauth, A. M., 1965, Physical state of viral nucleic acid and the sensitivity of viruses to ultraviolet light, Biophys. J. 5, 257.PubMedGoogle Scholar
  259. Reichmann, M. E., 1959, Potato X virus. III. Light scattering studies, Can. J. Chem. 37, 384.Google Scholar
  260. Reichmann, M. E., 1960, Degradation of potato virus X, J. Biol. Chem. 235, 2959.PubMedGoogle Scholar
  261. Remsen, J. F., Miller, N., and Cerutti, P. A., 1970, Photohydration of uridine in the RNA of coliphage R17. II. The relationship between UV inactivation and uridine photohydration, Proc. Natl. Acad. Sci. USA 65, 460.PubMedGoogle Scholar
  262. Remsen, J. F., Mattern, M., Miller, N., and Cerutti, P. A., 1971, Photohydration of uridine in the ribonucleic acid of coliphage R17. Lethality of uridine photohydrates and nonlethality of cyclobutane-type photodimers, Biochemistry 10, 524.PubMedGoogle Scholar
  263. Richards, K. E., Williams, R. C., and Calendar, R., 1973, Mode of DNA packing within bacteriophage heads, J. Mol. Biol. 78, 255.PubMedGoogle Scholar
  264. Rossomando, E. F., and Bladen, H. A., 1969, Physical changes associated with heating bacteriophage fl, Virology 39, 921.PubMedGoogle Scholar
  265. Rossomando, E. F., and Milstein, J. B., 1971, Electro-optic evidence for the control of the structure of bacteriophage fl by a minor coat protein, J. Mol. Biol. 58, 187.PubMedGoogle Scholar
  266. Rossomando, E. F., and Zinder, N. D., 1968, Studies on the bacteriophage fl. I. Al- kali-induced disassembly of the phage into DNA and protein, J. Mol. Biol. 36, 387.PubMedGoogle Scholar
  267. Rubinstein, I., 1960, Ph.D. Thesis, University of California, Los Angeles, Calif. (quoted by Kilkson and Maestre, 1962 ).Google Scholar
  268. Rushizky, G. W., Knight, C. A., and McLaren, A. D., 1960, A comparison of the ultraviolet-light inactivation of infectious ribonucleic acid preparations from tobacco mosaic virus with those of the native and reconstituted virus, Virology 12, 32.PubMedGoogle Scholar
  269. Rvachev, V. P., Sachnovsky, M. Y., Gumenetsky, S. G., Tikchonenko, T. I., and Dobrov, E. N., 1968, Study of absorbancy of viral suspension with integrating photometer, Zh. Prikl. Spektrosk. 8, 844.Google Scholar
  270. Schachter, E. M., Bendet, I. R., and Lauffer, M. A., 1966, Orientation of the RNA in tobacco mosaic virus, J. Mol. Biol. 22, 165.Google Scholar
  271. Schauenstein, E., and Bayzer, H., 1955, Über die quantitative Berücksichtigung der Tyndall-Absorption im UV-Absorptions-spektrum von Proteinen, J. Polymer Sci. 16, 45–52.Google Scholar
  272. Schellman, J. A., and Schellman, C., 1966, The conformation of polypeptide chains in proteins, in “Proteins” (H. Neurath, ed.) Vol. 2, p. 1, Academic Press, New York.Google Scholar
  273. Schramm, G., and Zillig, W., 1955, Über die Struktur des Tabakmosaikvirus. IV. Die Reaggregation des nucleinsäurefreien Proteins, Z. Naturforsch. 10B, 493.Google Scholar
  274. Schubert, D., and Frank, H., 1971, Properties of particles aggregated from protein subunits of bacteriophage fr, Virology 43, 41.PubMedGoogle Scholar
  275. Schuster, H., and Vielmetter, W., 1961, Studies on the inactivating and mutagenic effect of nitrous acid and hydroxylamine on viruses, J. Chim. Phys. Physochim. Biol. 58, 1005–1010.Google Scholar
  276. Schuster, H., and Wilhelm, R. C., 1963, Reaction differences between TMV and its free ribonucleic acid with nitrous acid, Biochim. Biophys. Acta 68, 554.PubMedGoogle Scholar
  277. Sehgal, O. P., 1973, Inactivation of southern bean mosaic virus and its ribonucleic acid by nitrous acid and ultraviolet light, J. Gen. Virol. 18, 1.PubMedGoogle Scholar
  278. Sehgal, O. P., and Krause, G. F., 1968, Efficiency of nitrous acid as an inactivating and mutagenic agent of intact tobacco mosaic virus and its isolated nucleic acid, J. Virol. 2, 966.PubMedGoogle Scholar
  279. Sehgal, O. P., and Soong, M. M., 1972, Reaction of nitrous acid with viral nucleic acids in situ, Virology 47, 239.Google Scholar
  280. Sellini, H., Maurizot, J. C., Dimicoli, J. L., and Hélène, C., 1973, Hydrogen bonding of amino acid side chains to nucleic acid bases, FEBS (Fed. Eur. Biochem. Soc.) Lett. 30, 219.Google Scholar
  281. Semenov, M. A., Gasan, A. I., and Maleev, V. Y., 1971, Study of thermal destruction of T2 phage and its components with infra-red spectroscopy and adiabatic calorimetry, Dokl. Akad. Nauk SSSR 198, 1449.PubMedGoogle Scholar
  282. Shapiro, J. T., Leng, M., and Felsenfeld, G., 1969, Deoxyribonucleic acid-polylysine complexes. Structure and nucleotide specificity, Biochemistry 8, 3219.PubMedGoogle Scholar
  283. Shapiro, R., Cohen, B. I., and Clagett, D. C., 1970, Specific acylation of the guanine residues of ribonucleic acid, J. Biol. Chem. 245, 2633.PubMedGoogle Scholar
  284. Shapiro, R., and Pohl, S. H., 1968, The reaction of ribonucleosides with nitrous acid. Side products and kinetics, Biochemistry 7, 448.PubMedGoogle Scholar
  285. Shatsky, I. N., Chichkova, N. V., and Bogdanov, A. A., 1971, RNA-protein interactions in the ribosomes, Mol. Biol. (Moscow) 5, 817.Google Scholar
  286. Shepherd, R. J., Wakeman, R. J., and Ghabrial, S. A., 1968, Preparation and properties of the protein and nucleic acid components of pea enation mosaic virus, Virology 35, 255.PubMedGoogle Scholar
  287. Shie, M., Chirgadze, Y. N., and Tikchonenko, T. I., 1970, A study of free and intra-phage DNA hydration using the infra-red spectroscopy, Vopr. Virusol. 5, 619.Google Scholar
  288. Shie, M., Kharitonenkov, I. G., Tikchonenko, T. I., and Chirgadze, Y. N., 1972a, New possibilities of investigating nucleic acids and nucleoproteins in aqueous solutions by infrared spectroscopy, Nature (Lond.) 235, 386.Google Scholar
  289. Shie, M., Nevskaya, N. A., and Chirgadze, Y. N., 1972b, The infrared spectra of water solutions of nucleic acids and the nucleoprotein complexes in the region of sugar-phosphate skleleton vibrations. Abst. IV Interntl. Biophys. Congr. Moscow CVII.Google Scholar
  290. Shih, T. Y., and Fasman, G. D., 1971, Circular dichroism studies of deoxyribonucleic acid complexes with arginine-rich histone IV (f2al), Biochemistry 10, 1675.PubMedGoogle Scholar
  291. Shih, T. Y., and Fasman, G. D., 1972, Circular dichroism studies of histone-deoxyribonucleic acid complexes. A comparison of complexes with histone I (f-1), histone IV (f2a1), and their mixtures, Biochemistry 11, 398.PubMedGoogle Scholar
  292. Siegel, A., and Norman, A., 1958, Action spectra for two strains of tobacco mosaic virus, Virology 6, 725.PubMedGoogle Scholar
  293. Siegel, A., Wildman, S. G., and Ginoza, W., 1958, Sensitivity to ultra-violet light of infectious TMV nucleic acid, Nature (Lond.) 178, 1117.Google Scholar
  294. Simmons, N. S., and Blout, E. R., 1960, The structure of TMV and its components: Ultraviolet optical rotatory dispersion, Biophys. J. 1, 55.PubMedGoogle Scholar
  295. Simmons, N. S., and Glazer, A. N., 1966, Reversible disorientation of RNA bases in tobacco mosaic virus (TMV). Optical rotatory dispersion, Abstr. II Interntl. Biophys. Congr. Vienna, p. 208.Google Scholar
  296. Simon, L. D., and Anderson, T. F., 1967, The infection of Escherichia coli by T2 and T4 bacteriophages as seen in the electron microscope. I. Attachment and penetration, Virology 2, 279.Google Scholar
  297. Simukova, N. A., and Budowsky, E. I., 1974, Conversion of non-covalent interactions in nucleoproteins into covalent bonds: UV-induced formation of polynucleotide-protein crosslinks in bacteriophage Sd virions, FEBS (Fed. Eur. Biochem. Soc.) Lett. 38, 299.Google Scholar
  298. Singer, B., 1971, Chemical modification of viral ribonucleic acid. IX. The effect of ultraviolet irradiation on TMV-RNA and other polynucleotides, Virology 45, 101.PubMedGoogle Scholar
  299. Singer, B., and Fraenkel-Conrat, H., 1969a, Chemical modification of viral ribonucleic acid. VII. The action of methylating agents and nitrosoguanidine on polynucleotides including TMV ribonucleic acid, Biochemistry 8, 3260.PubMedGoogle Scholar
  300. Singer, B., and Fraenkel-Conrat, H., 19696, Chemical modification of viral ribonucleic acid. VIII. The chemical and biological effects of methylating agents and nitrosoguanidine on tobacco mosaic virus, Biochemistry 8, 3266.Google Scholar
  301. Singer, B., and Fraenkel-Conrat, 1969c, Mutagenicity of alkyl and nitroso-alkyl compounds acting on tobacco mosaic virus and its RNA, Virology 39, 395.PubMedGoogle Scholar
  302. Singer, B., and Fraenkel-Conrat, H., 1970, Messenger and template activities of chemically modified polynucleotides, Biochemistry 9, 3694.PubMedGoogle Scholar
  303. Sinha, R. K., and Misra, D. N., 1971, Studies on the secondary structure of intraphage T-7 DNA, Z. Naturforsch. 26B, 1288.Google Scholar
  304. Sinsheimer, R. L., 1959, Purification and properties of bacteriophage çX174, J. Mol. Biol. 1, 37.Google Scholar
  305. Skladneva, V. B., Budowsky, E. I., and Tikchonenko, T. I., 1973, Study of modification of Sd phage by bisulfite, in “Molecular Biology of Viruses,” p. 86, Academy of Medical Sciences & Institute of Virology, Moscow.Google Scholar
  306. Smith, K. C., and Aplin, R. T., 1966, A mixed photoproduct of uracil and cysteine (5- S-cysteine-6-hydrouracil). A possible model for the in vivo cross-linking of deoxyribonucleic acid and protein by ultraviolet light, Biochemistry 5, 2125.PubMedGoogle Scholar
  307. Smith, K. C., and Meun, D. H. C., 1968, Kinetics of the photochemical addition of [5S] cysteine to polynucleotides and nucleic acids, Biochemistry 7, 1033.PubMedGoogle Scholar
  308. Smith, K. C., and O’Leary, M. E., 1967, Photoinduced DNA-protein cross-links and bacterial killing: A correlation at low temperatures, Science (Wash., D.C.) 155, 1024.Google Scholar
  309. Smith, K. C., Hodgkins, B., and O’Leary, M. E., 1966, The biological importance of ultraviolet light induced DNA-protein crosslinks in Escherichia coli, STAU, Biochim. Biophys. Acta 114, 1.Google Scholar
  310. Solari, A. J., 1965, Structure of the chromatin in sea urchin sperm, Proc. Natl. Acad. Sci. USA 53, 503.PubMedGoogle Scholar
  311. Spirin, A. S., 1963, Some problems concerning the macromolecular structure of ribonucleic acids, Progr. Nucleic Acid Res. 1, 30.Google Scholar
  312. Spitkowsky, D. M., Andrianov, V. T., and Pisarevsky, A. T., 1969, “Radiation Biophysics of Nucleoproteins,” Atomizdat, Moscow (in Russian).Google Scholar
  313. Staehelin, M., 1957, Inactivation of TMV-RNA with formaldehyde, Fed. Proc. 16, 254.Google Scholar
  314. Staehelin, M., 1958, Reaction of TMV nucleic acid with formaldehyde, Biochim. Biophys. Acta 29, 410.PubMedGoogle Scholar
  315. Starowsky, O. V., 1971, An approach to the calculation of permeability of the TMV capsid, in “Voprosy Obshchey Virusologii,” Vol. 1, p. 44, Institute of Virology, Academy of Medical Sciences, Moscow.Google Scholar
  316. Stols, A. L. H., and Veldstra, H., 1965, Interactions of turnip yellow mosaic virus with quaternary ammonium salts, Virology 25, 508.PubMedGoogle Scholar
  317. Streeter, D. G., and Gordon, M. P., 1968, A study of inactivation “and reactivation” in the UV irradiated TMV and TMV RNA, Photochem. Photobiol. 8, 81.Google Scholar
  318. Stroke, G. W., and Haliova, M., 1972, Attainment of diffraction limited in high-resolution electron microscopy by a posterioli holographic image sharpening, Optik 35, 50–65.Google Scholar
  319. Sundaralingham, M., 1969, Stereochemistry of nucleic acids and their constituents. IV. Allowed and preferred conformations of nucleosides, nucleoside mono-, di-, tri-, tetraphosphates, nucleic acids and polynucleotides, Biopolymers 7, 821.Google Scholar
  320. Sutherland, G. B. B. M., and Tsuboi, M., 1957, The infra-red spectrum and molecular configuration of sodium deoxyribonucleate, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 239, 446.Google Scholar
  321. Suwalsky, M., and Traub, W., 1972, A comparative X-ray study of a nucleoprotamine and DNA complexes with polylysine and polyarginine, Biopolymers 11, 2223.PubMedGoogle Scholar
  322. Takeya, K., and Amako, K., 1966, A rod-shaped pseudomonas phage, Virology 28, 163.PubMedGoogle Scholar
  323. Taniguchi, M., Yamaguchi, A., and Taniguchi, T., 1971, Flow dichroic spectra of TMV and their protein assemblies, Biochim. Biophys. Acta 251, 164.PubMedGoogle Scholar
  324. Tao, M., Gordon, M. P., and Nester, E. W., 1966, Kinetic isotope studies on the inactivation of transforming deoxyribonucleic acid, tobacco mosaic virus, and its nucleic acid by ultraviolet light, Biochemistry 5, 4146.Google Scholar
  325. Tao, M., Small, G., O’Brien, L., and Gordon, M. P., 1968, Photochemical alterations of TMV RNA, Fifth Interntl. Congr. Photobiol. Hanover, New Hampshire, p. 109.Google Scholar
  326. Tao, M., Small, G. D., and Gordon, M. P., 1969, Photochemical alterations in ribonucleic acid isolated from ultraviolet-irradiated tobacco mosaic virus, Virology 39, 534.PubMedGoogle Scholar
  327. Thomas, C. A., 1963, The organization of DNA in bacteriophage and bacteria, in “Molecular Genetics” (J. H. Taylor, ed.), p. 113, Academic Press, New York. Tikchonenko, T. I., 1969, Conformation of viral nucleic acids in situ, Adv. Virus Res. 15, 201.Google Scholar
  328. Tikchonenko, T. I., 1971, About the secondary structure of DNA in virus particles, Vestn. Akad. Med. Nauk SSSR 2, 46.Google Scholar
  329. Tikchonenko, T. I., 1974, The DNA-protein interactions in the phage nucleoproteins, in “Structure and Functions of Nucleic Acids and Nucleoproteins,” Thesis of N. A. Belozetsky Symposium, Jan. 29-Feb. 2, 1974, Moscow State University, Moscow.Google Scholar
  330. Tikchonenko, T. I., and Dobrov, E. N., 1969, Peculiarities of the secondary structure of bacteriophage in situ. II. Reaction with formaldehyde, J. Mol. Biol. 42, 119.PubMedGoogle Scholar
  331. Tikchonenko, T. I., Dobrov, E. N., Velikodvorskaya, G. A., and Kisseleva, N. P., 1966, Peculiarities of the secondary structure of phage DNA in situ, J. Mol. Biol. 18, 58.Google Scholar
  332. Tikchonenko, T. I., Budowsky, E. I., Sklyadneva, V. B., and Khromov, I. S., 1971, The secondary structure of bacteriophage DNA in situ. III. Reaction of Sd phage with Omethylhydroxylamine, J. Mol. Biol. 55, 535.PubMedGoogle Scholar
  333. Tikchonenko, T. I., Kisseleva, N. P., Zintshenko, A. I., Ulanov, B. P., and Budowsky, E. I., 1973, Peculiarities of the secondary structure of bacteriophage DNA in situ. IV. Covalent cross-links between DNA and protein that arise in the reaction of Sd phage with O-methylhydroxylamine, J. Mol. Biol. 73, 109.PubMedGoogle Scholar
  334. Tikchonenko, T. I., Kislina, O. S., and Dobrov, E. N., 1974a, Peculiarities of the secondary structure of bacteriophage DNA in situ. V. Change in DNA conformation inside the phages under the influence of formaldehyde, Arch. Biochem. Biophys. 160, 1.PubMedGoogle Scholar
  335. Tikchonenko, T. I., Budowsky, E. I., and Mazurenko, N. N., 1974b, Peculiarities of the secondary structure of bacteriophage DNA in situ. VI. The reaction of phage Sd with glyoxal (in press).Google Scholar
  336. Tikchonenko, T. I., Andronikova, M. L., Tchruni, F. I., and Kisseleva, N. P., I974c, Manuscript in preparation.Google Scholar
  337. Tinoco, I., Jr., 1960, Hypochromism in polynucleotides, J. Am. Chem. Soc. 82, 4785–4790.Google Scholar
  338. Tollin, P., Wilson, H. R., Young, D. W., Cathro, J., and Mowat, W. P., 1967, X-ray diffraction and electron microscope studies of narcissus mosaic virus, and comparison with potato virus X, J. Mol. Biol. 26, 353.PubMedGoogle Scholar
  339. Tornita, K.-I., and Rich, A., 1964, X-ray diffraction investigations of complementary RNA, Nature (Lond.) 201, 1160.Google Scholar
  340. Tramer, Z., Wierzchowski, K. L., and Shugar, D., 1969, Influence of polynucleotide secondary structure on thymine photodimerization, Acta Biochim. Pol. 16, 83.PubMedGoogle Scholar
  341. Travers, F., Michelson, A. M., and Douzou, P., 1970, Conformational changes of nucleic acids in methanol-water solutions at low temperature, Biochim. Biophys. Acta 217, 1.PubMedGoogle Scholar
  342. Tremaine, J. H., and Goldsack, D. E., 1968, The structure of regular viruses in relation to their subunit amino acid composition, Virology 35, 227.PubMedGoogle Scholar
  343. Tsuboi, M., 1969, Application of infrared spectroscopy to structure studies of nucleic acids, Appl. Spectr. Rev. 3, 45.Google Scholar
  344. Tsugita, A., and Fraenkel-Conrat, H., 1963, Contributions from TMV studies to the problem of genetic information transfer and coding., in “Molecular Genetics” (J. H. Taylor, ed.), Part 1, Chapt. X, p. 477, Academic Press, New York.Google Scholar
  345. Tung, J-S., and Knight, C. A., 1972, The coat protein subunits of cucumber viruses 3 and 4 and a comparison of methods for determining their molecular weights, Virology 48, 574.PubMedGoogle Scholar
  346. Tunis, M. J., and Hearst, J. E., 1968, Optical rotatory dispersion of DNA in concentrated salt solutions, Biopolymers 6, 1218–1223.PubMedGoogle Scholar
  347. Tunis-Schneider, M. J., and Maestre, M. F., 1970, Circular dichroism spectra of oriented and unoriented deoxyribonucleic acid films-A preliminary study, J. Mol. Biol. 52, 521.PubMedGoogle Scholar
  348. Turchinsky, M. F., Kusova, K. S., and Budowsky, E. I., 1974, Conversion of non-covalent interactions in nucleoproteins into covalent bonds: Bisulfide-induced formation of polynucleotide protein crosslinks in MS2 bacteriophage virions, FEBS (Fed. Eur. Biochem. Soc.) Lett. 38, 304.Google Scholar
  349. Vainstein, B. K., 1963, “X-ray Diffraction by Chain Molecules,” Nauka, Moscow.Google Scholar
  350. van Kammen, A., 1972, Plant viruses with a divided genome, Annu. Rev. Plant Pathol. 10, 125.Google Scholar
  351. van de Hulst, H. C., 1957, “Light Scattering by Small Particles,” John Wiley & Sons, New York.Google Scholar
  352. Varma, A., Gibbs, A. J., Woods, R. D., and Finch, J. T., 1968, Some observations on the structure of the filamentous particles of several plant viruses, J. Gen. Virol. 2, 107.PubMedGoogle Scholar
  353. Varshaysky, Y. M., Evdokimov, Y. M., and Akimenko, N. M., 1973, A compact form of double-stranded DNA in solution, Stud. Biophys. 40, 41–56.Google Scholar
  354. Velikodvorskaya, G. A., Klimenko, S. M., Mazzarelli, M., and Tikchonenko, T. I., 1968, Interaction of phages with bacterial cell walls, Mol. Biol. (Moscow) 2, 519.Google Scholar
  355. Vielmetter, W., and Schuster, H., 1960, The base specificity of mutation induced by nitrous acid in phage T2, Biochem. Biophys. Res. Commun. 2, 324.Google Scholar
  356. von Hippel, P. H., and McGhee, J. D., 1972, DNA-protein interactions, Annu. Rev. Biochem. 41, 231.Google Scholar
  357. Wagner, K. G., and Arav, R., 1968, On the interaction of nucleotides with poly-Llysine and poly-L-arginine. I. The influence of the nucleotide base on the binding behavior, Biochemistry 7, 1771.PubMedGoogle Scholar
  358. Wang, T. M., and McLaren, A. D., 1972, Conformational changes induced in tobacco mosaic virus nucleic acid by ultraviolet radiation, Biophysik 8, 237.Google Scholar
  359. Warshaw, M. M., and Tinoco, I., Jr., 1965, Absorption and optical rotatory dispersion of six dinucleoside phosphates, J. Mol. Biol. 13, 54.PubMedGoogle Scholar
  360. Werbin, H., Valentine, R. C., and McLaren, A. D., 1967, Photobiology of RNA bacteriophages. I. Ultraviolet inactivation and photoreactivation studies, Photochem. Photobiol. 6, 205–213.Google Scholar
  361. Werbin, H., Valentine, R. C., Hidalgo-Salvatierra, O., and McLaren, A. D., 1968, Photobiology of the RNA bacteriophages. II. UV-irradiation of f2: Effects on extracellular stages of infection and on early replication, Photochem. Photobiol. 7, 253–261.PubMedGoogle Scholar
  362. Wetlaufer, D. B., 1962, Ultraviolet spectra of proteins and amino acids, Adv. Protein Chem. 17, 303.Google Scholar
  363. White, R. A., and Fischbach, F. A., 1973, An X-ray scattering investigation of broad bean mottle virus in solutions of various electron densities, J. Mol. Biol. 75, 549.PubMedGoogle Scholar
  364. Wilson, H. R., and Tollin, P., 1969, Some observations on the structure of potato virus X, J. Gen. Yirol. 5, 151.Google Scholar
  365. Wiseman, R. L., Dunker, A. K., and Marvin, D. A., 1972, Filamentous bacterial viruses. III. Physical and chemical characterization of the Ifl virion, Virology 48, 230.PubMedGoogle Scholar
  366. Yamada, Y., Shigeta, A., and Nozu, K., 1973, Ultraviolet effects on biological function of RNA phage MS2, Biochim. Biophys. Acta 299, 121.PubMedGoogle Scholar
  367. Yang, J. T., and Samejima, T., 1969, Optical rotatory dispersion and circular dichroism of nucleic acids, Progr. Nucleic Acid Res. Mol. Biol. 9, 223.Google Scholar
  368. Zaretsky, I. Z., Farashyan, V. P., and Tikchonenko, T. I., 1971, A study of kinetics of T2 phage adsorption on E. coli B cells and stabilization of phage-cell complex against treatment in homogenizer, Vopr. Med. Khim. 17, 315.Google Scholar
  369. Zarybnicky, V., 1969, Mechanism of T-even DNA ejection, J. Theor. Biol. 22, 33.PubMedGoogle Scholar
  370. Zinder, N. D., 1965, RNA phages, Annu. Rev. Microbiol. 19, 455.PubMedGoogle Scholar
  371. Zipper, P., Kratky, O., Herrmann, R., and Hohn, T. 1971, An X-ray small angle study of the bacteriophages fr and R17, Eur. J. Biochem. 18, 1.PubMedGoogle Scholar
  372. Zubay, G., and Wilkins, M. H. F., 1960, X-ray diffraction studies of the structure of ribosomes from Escherichia coli, J. Mol. Biol. 2, 105.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • T. I. Tikchonenko
    • 1
  1. 1.Institute of Virology USSR Academy of Medical Sciences and Department of VirologyMoscow State UniversityMoscowUSSR

Personalised recommendations