A Syntactic Pattern Recognition System with Learning Capability

  • H. C. Lee
  • K. S. Fu


Stochastic syntax analysis of pictorial patterns is investigated in this study. Pictorial image identification is performed through syntax analysis and the maximum likelihood decision rule. A learning algorithm is developed through the joint application of two inference procedures. The first procedure, which relies on a man-machine interactive technique, is used to infer the generative grammar. Next, the statistical information of the images is utilized to infer the production probabilities of the grammar. Chromosome aberrations induced by radiation exposure are identified through the use of the learning algorithm and stochastic syntax analysis.


Inference Algorithm Normal Chromosome Inference Procedure Learn Capability Production Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Narasimhan, Labeling Schemata and Syntactic Description of Pictures,Information and Control,7, 151–179 (1964).CrossRefGoogle Scholar
  2. 2.
    R. Narasimhan, Syntax-Directed Interpretation of Classes of Pictures,Commun. ACM 9(3), 166–173(1966).Google Scholar
  3. 3.
    R. Kirsch, Computer Interpretation of English Text and Picture Patterns,IEEE Trans. Elec.EC-13, 363–376 (August 1964).Google Scholar
  4. 4.
    W. Miller and A. Shaw, Linguistics Methods in Picture Processing—A Survey, inFall Joint Computer Conf. (1968), pp. 279–290.Google Scholar
  5. 5.
    K. S. Fu and P. H. Swain, On Syntactic Pattern Recognition,Software Engineering, Vol. 2, J. T. Tou, ed., Academic Press, New York (1971).Google Scholar
  6. 6.
    K. S. Fu,Sequential Methods in Pattern Recognition and Machine Learning, Academic Press, New York (1968).Google Scholar
  7. 7.
    K. S. Fu, On Syntactic Pattern Recognition and Stochastic Languages, inFrontiers of Pattern Recognition, S. Watanabe, ed., Academic Press, New York (1972).Google Scholar
  8. 8.
    P. H. Swain and K. S. Fu, Stochastic Programmed Grammars for Syntactic Pattern Recognition, Pattern Recognition4(1) (1972).Google Scholar
  9. 9.
    R. Ledley, L. Rotolo, T. Golab, J. Jacobsen, M. Ginsberg, and J. Wilson, “FIDAC,” inOptical and Electro Optical Information Processing, Tippett, éd., MIT Press, Cambridge, Massachusetts (1965),Google Scholar
  10. 10.
    G. Gallus and P. Neurath, Improved Computer Chromosome Analysis Incorporating Preprocessing and Boundary Analysis,Phys. Med. Biol 15(3), 435–445 (1970).CrossRefGoogle Scholar
  11. 11.
    H. C. Lee and K. S. Fu, A Stochastic Syntax Analysis Procedure and Its Application to Pattern Recognition,IEEE Trans. Computers,C-21(7) (July 1972).Google Scholar
  12. 12.
    T. L. Booth, Probabilistic Representation of Formal Languages,IEEE Conf. Record of the 1969 10th Annual Symp. on Switching Automata(October 1969).Google Scholar
  13. 13.
    S. Crespi-Reghizzi, The Mechanical Acquisition of Precedence Grammars,UCLA-ENG-7054, Univ. of California, Los Angeles (1970).Google Scholar
  14. 14.
    S. Crespi-Reghizzi, Reduction of Enumeration in Grammar Acquisition,Proc. 2nd Int. Joint Conf. on Artificial Intelligence, London (1971), pp. 546–552.Google Scholar
  15. 15.
    K. S. Fu, A Survey of Grammatical Inference,Tech. Rept. TR-EE72–18, School of Electrical Engineering, Purdue Univ., Lafayette, Indiana (June 1972).Google Scholar
  16. 16.
    A. W. Biermann and J. A. Feldman, A Survey of Results in Grammatical Inference, inFrontiers of Pattern Recognition, S. Watanabe, ed.. Academic Press, New York (1972).Google Scholar
  17. 17.
    P. Billingsley,Statistical Inference for Markov Processes, Univ. of Chicago Press, Chicago, Illinois (1961).Google Scholar
  18. 18.
    K. S. Fu and T. Hunag, Stochastic Grammars and Languages,Int. J. Computer Inf. Sci,1, 135–170 (1962).CrossRefGoogle Scholar
  19. 19.
    A. Rosenfeld,Picture Processing by Computer, Academic Press, New York (1969).Google Scholar
  20. 20.
    B. S. Lipkin and A. Rosenfeld (eds.),Picture Processing and Psychopictorics, Academic Press, New York (1970).Google Scholar
  21. 21.
    T. W. Anderson and L. A. Goodman, Statistical Inference about Markov Chains,Ann. Math. Stat 28, 89–109 (1957).CrossRefGoogle Scholar
  22. 22.
    W. G. Cochran, The X2-Test of Goodness of Fit,Ann. Math. Stat,27, 1–22 (1956).CrossRefGoogle Scholar
  23. 23.
    H. C. Lee and K. S. Fu, Stochastic Linguistics for Picture Recognition,Technical Report TR-EE72–17, School of Electrical Engineering, Purdue Univ., Lafayette, Indiana (June 1972).Google Scholar
  24. 24.
    H. G. Vetter, Restoration of Biological Images Using Limited Sampling,Phys. Med. Biol 14(3), 417–430 (1969).CrossRefGoogle Scholar
  25. 25.
    H. Freeman, On the Encoding of Arbitrary Geometric Configurations,IRE Trans. Elec. EC-10, 260–268 (1961).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • H. C. Lee
    • 1
  • K. S. Fu
    • 1
  1. 1.School of Electrical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations