Representing Geographic Information for Efficient Computer Search

  • R. D. Merrill
  • M. Tannenbaum


Computer-based modeling of related natural and cultural processes for a large geographic area requires an information system which accurately represents the process parameters in a readily accessible form. This paper describes the representational techniques used in an experimental system applied to the study of one such process: microwave radiation characteristics of terrain. It is shown that with these techniques depicting terrain coverage, elevation, and slope parameters, data can be retrieved easily according to physical properties and geographic locations. The representations also provide a means for efficiently analyzing spatial relationships such as adjacency and inclusion of features. Typical encoding and retrieval times are indicated.


Efficient Computer Test Line Microwave Radiometer Closed Boundary Search Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. H. Spanier,Algebraic Topology, McGraw-Hill, New York (1967), Section 4. 17. 5.Google Scholar
  2. 2.
    W. G. Eppler and R. D. Merrill, Relating Remote Sensor Signals with Groundtruth Information,IEEE Proc.57(4), 665–675 (1969).CrossRefGoogle Scholar
  3. 3.
    W. G. Eppler., Interactive Systems for Remote Sensor Data Analysis, inProc. 7th Int. Symp. on Remote Sensing of Environment, The University of Michigan, Willow Run Laboratories, Ann Arbor, Michigan (May 1971 ).Google Scholar
  4. 4.
    N. Macon and M. Kiefer, Computer Manipulation of Digitized Pictures, inProc. Spring Joint Computer Conf. (1971), pp. 407–413.Google Scholar
  5. 5.
    R. D. Merrill, Representation of Contours and Regions for Efficient Computer Search,Commun. ACM(1973).Google Scholar
  6. 6.
    R. G. Loomis, Boundary Networks,Commun. ACM 8(1), 44–48 (1965).CrossRefGoogle Scholar
  7. 7.
    J. D. Jacobsen, Geometric Relationships for Retrieval of Geographic Information,IBM Systems J.7(3/4), 331–341 (1968).CrossRefGoogle Scholar
  8. 8.
    H. Freeman, On the Encoding of Arbitrary Geometric Configurations,IRE Trans. EC,10(2), 260–268 (June 1961).CrossRefGoogle Scholar
  9. 9.
    J. P. Pfaltz,MANS, A Map Analysis System, TR-67-42, Univ. of Maryland Computer Science Center (February 1967).Google Scholar
  10. 10.
    G. S. Sidhu and R. T. Boute, Property Encoding: Application in Binary Picture Encoding and Boundary Following,IEEE Trans, on Computers C-21(l 1 ), 1206–1215 (1972).Google Scholar
  11. 11.
    J. P. Pfaltz, Geographical Information Retrieval Systems,IEEE Int. Conv. Record(March 1972).Google Scholar
  12. 12.
    R. F. Tomlinson,An Introduction to the Geographic Information System of the Canada Land Inventory, Canada Department of Forestry and Rural development, Ottawa (1967).Google Scholar
  13. 13.
    Automatic Cartographic Systems (1995) (MOD JJ), Vol. I and Vol. II, Pennsylvania Research Associates, RADC-TR-69-339 (March 1970).Google Scholar
  14. 14.
    H. Freeman and S. P. Morse, On Searching a Contour Map for a Given Terrain Elevation Profile,J. Franklin Inst 284(1) 1–25 (July 1967).CrossRefGoogle Scholar
  15. 15.
    S. P. Morse, Concepts of Use in Contour Map Processing,Commun. ACM 12(3), 147–152 (1969).CrossRefGoogle Scholar
  16. 16.
    E. G. Eppler and G. A. Simas,Theory of Map Matching, LMSC-D051104, Lockheed Palo Alto Research Laboratory (March 1968).Google Scholar
  17. 17.
    K. Kunzi, M. Wuthrich and E. Schanda, A MM-Wave Scanning Radiometer for Terrain Mapping, inProc. 7th Int. Symp. on Remote Sensing of Environment, Univ. of Michigan, Ann Arbor, Michigan (May 1971 ).Google Scholar

Copyright information

© Plenum Press, New York 1974

Authors and Affiliations

  • R. D. Merrill
    • 1
  • M. Tannenbaum
    • 1
  1. 1.Lockheed Palo Alto Research LaboratoryPalo AltoUSA

Personalised recommendations