Magnetic Field Distribution in Type II Superconductors by Neutron Diffraction

  • J. Schelten
  • H. Ullmaier
  • G. Lippmann
  • W. Schmatz


In 1964 de Gennes and Matricon1 suggested that the periodic structure of the mixed state in type II superconductors could be investigated by neutron diffraction. A first experiment of this kind was performed by Cribier et al. 2 which proved the existence of a triangular flux line lattice in Nb. In the following years no other neutron scattering experiments were reported, mainly because of the development of the decoration technique by Essmann and Träuble3 which provides a much more direct means for the investigation of flux line arrangements. However, this method is not able to determine the microscopic magnetic structure of the mixed state. In the following we show that small-angle scattering of subthermal neutrons reveals the magnetic structure via the experimentally determined form factors.4,5 The form factors have been determined from integral reflectivities of flux line Bragg reflections of different order. Various types of flux line lattices have been investigated, ranging from a polycrystalline state up to single crystals of less than 30′ mosaic spread. The growth of different types of flux line lattices depends mainly on the crystalline state and purity of the superconducting metal. For type II/1 superconductors6 (K ≃ 1) experimental results7 and theoretical considerations8,9. suggest an attraction between flux lines. This assumption has been verified by our measurements.


Form Factor Mixed State Neutron Diffraction Flux Line Magnetic Field Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.G. de Gennes and J. Matricon, Rev. Mod. Phys. 36, 45 (1964).ADSCrossRefGoogle Scholar
  2. 2.
    D. Cribier, B. Jacrot, L.M. Rao, and B..Farnoux, Phys. Lett. (Netherlands) 9, 106 (1964); in Progress in Low Temperature Physics, C.J. Gorter, ed., North-Holland, Amsterdam (1967), Vol. V, p. 161.Google Scholar
  3. 3.
    U. Essmann and H. Träuble, Phys. Lett. (Netherlands) A24, 526 (1967).ADSCrossRefGoogle Scholar
  4. 4.
    J. Schelten, H. Ullmaier, and W. Schmatz, Phys. Stat. Sol. (B) 48, 619 (1971).ADSCrossRefGoogle Scholar
  5. 5.
    J. Schelten, H. Ullmaier, and G. Lippmann, Z. Physik 253, 219 (1972).ADSCrossRefGoogle Scholar
  6. 6.
    J. Auer and H. Ullmaier, Phys. Rev. B 7, 136 (1973).ADSCrossRefGoogle Scholar
  7. 7.
    U. Krägeloh, Phys. Stat. Sol. 42, 559 (1970).ADSCrossRefGoogle Scholar
  8. 8.
    K. Dichtel, Phys. Lett. (Netherlands) A35, 285 (1971).ADSCrossRefGoogle Scholar
  9. 9.
    A.E. Jacobs, Phys. Rev. B 3, 3821 (1971).CrossRefGoogle Scholar
  10. 10.
    J. Schelten, Kerntechnik 14, 86 (1972).Google Scholar
  11. 11.
    D. Cribier, Y. Simon, and P. Thorel, Phys. Rev. Lett. 28, 1370 (1972).ADSCrossRefGoogle Scholar
  12. 12.
    B. Obst, Phys. Stat. Sol. (B) 45, 467 (1971).ADSCrossRefGoogle Scholar
  13. 13.
    P.G. de Gennes, Superconductivity of Metals and Alloys, Benjamin, New York (1966), p. 69.MATHGoogle Scholar
  14. 14.
    T. Ogasawara, Y. Kubota, and K. Yasukochi, J. Phys. Soc. (Japan) 25, 1307 (1968).ADSCrossRefGoogle Scholar
  15. 15.
    L. Neumann and L. Tewordt, Z. Physik 189, 55 (1966).ADSCrossRefGoogle Scholar
  16. 16.
    A. Kung, Phys. Rev. Lett. 15, 1006 (1970).ADSCrossRefGoogle Scholar
  17. 17.
    J.M. Delrieu, J. Low Temp. Phys. 6, 197 (1972).ADSCrossRefGoogle Scholar
  18. 18.
    G. Eilenberger, L. Kramer, and W. Pesch, Proc. Discussion Meeting on the Structure of the Mixed State, Jülich, April 1972, p. 11; L. Kramer and W. Pesch, this volume.Google Scholar
  19. 19.
    G. Eilenberger, Phys. Rev. A 153, 584 (1967).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • J. Schelten
    • 1
  • H. Ullmaier
    • 1
  • G. Lippmann
    • 1
  • W. Schmatz
    • 1
  1. 1.Institut für Festkörperforschung der Kernforschungsanlage JülichJülichGermany

Personalised recommendations