NMR Anomalies and Superconductivity in Transition Metals: Vanadium

  • B. N. Ganguly


One of the major predictions of BCS theory is that the spin susceptibility in a superconductor should decrease exponentially with temperature, falling to zero at absolute zero.1 An indirect way of testing this prediction is the Knight shift experiment in which one expects that, like the spin susceptibility, the Knight shift K for a superconductor should also vanish exponentially at absolute zero. The nontransition metal superconductors (Hg, Sn, Al) do show a decrease in K with temperature, though they are not in perfect agreement with the BCS prediction.‡ On the contrary, the Knight shift result in transition elements is quite anomalous.3 For vanadium no change in the Knight shift value from the normal (K n ) to the superconducting (K s ) state could be detected.3 A number of theoretical attempts to explain this anomaly invoked the idea that in the presence of an external magnetic field the electronic ground state of superconductors is not a spin-zero singlet state. It was pointed out that the spin—orbit scattering at surface atoms,4 spin—orbit scattering with the periodic lattice,5 or triplet-state pairing6 may result in a nonzero spin electronic ground state. For vanadium the spin—orbit effects are quite small7 and, to the author’s knowledge, there is no experimental indication of the striking consequences of a triplet-state pairing theory of superconductivity in any system.


Hyperfine Field Knight Shift Spin Susceptibility Electronic Specific Heat Vleck Paramagnetism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Yosida, Phys. Rev. 110, 769 (1958).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    R. H. Hammond and G. H. Kelly, Phys. Rev. Lett. 18, 156 (1967).ADSCrossRefGoogle Scholar
  3. 3.
    R. J. Noer and W. D. Knight, Rev. Mod. Phys. 36, 177 (1964).ADSCrossRefGoogle Scholar
  4. 4.
    R. A. Farrell, Phys. Rev. Lett. 3, 262 (1959);CrossRefGoogle Scholar
  5. P. W. Anderson, Phys. Rev. Leu. 3, 325 (1959).MATHGoogle Scholar
  6. 5.
    J. Appel, Phys. Rev. 139, A1536 (1965);ADSCrossRefGoogle Scholar
  7. A. A. Abrikosov and L. P. Gor’kov, Soviet Phys-JETP 15, 752 (1962).Google Scholar
  8. 6.
    M. A. Jensen and H. Suhl, Magnetism, G. T. Rado and H. Suhl, eds., Academic Press, New York (1966), Vol. IIB, p. 199;Google Scholar
  9. S. Doniach and S. Engelsberg, Phys. Rev. Len. 17, 750 (1966).ADSCrossRefGoogle Scholar
  10. 7.
    J. J. Englehardt, G. W. Webb, and B. T. Matthias, Science 155, 191 (1967).ADSCrossRefGoogle Scholar
  11. 8.
    G. M. Eliashberg, Soviet Phys-JETP 12, 1000 (1961);Google Scholar
  12. W. L. McMillan, Phys. Rev. 167, 331 (1968).ADSCrossRefGoogle Scholar
  13. 9.
    G. R. Huguenin, G. P. Pells, and D. N. Baldock, J. Phys. F 1, 281 (1971).ADSCrossRefGoogle Scholar
  14. 10.
    J. Butterworth, Phys. Rev. Lett. 5, 305 (1960).ADSCrossRefGoogle Scholar
  15. 11.
    J. Butterworth, Proc. Phys. Soc. (London) 85, 735 (1965).ADSCrossRefGoogle Scholar
  16. 12.
    Y. Yafet and V. Jaccarino, Phys. Rev. 133, A1630 (1964).ADSCrossRefGoogle Scholar
  17. 13.
    A. M. Clogston, A. C. Gossard, V. Jaccarnio, and Y. Yafet, Phys. Rev. Lett. 9, 262 (1962).ADSCrossRefGoogle Scholar
  18. 14.
    L. P. Kadanoff, Phys. Rev. 132, 2073 (1963).MathSciNetADSCrossRefGoogle Scholar
  19. 15.
    N. F. Berk and J. R. Schrieffer, in Proc. 10th Intern. Conf. Low Temp. Phys., 1966, VINITI, Moscow (1967), Vol. I IA, p. 150.Google Scholar
  20. 16.
    L. F. Mattheiss, Phys. Rev. 134, A970 (1964).CrossRefGoogle Scholar
  21. 17.
    A. M. Clogston, A. C. Gossard, V. Jaccarnio, and Y. Yafet, Rev. Mod. Phys. 36, 170 (1964).ADSCrossRefGoogle Scholar
  22. 18.
    A. Narath and A. T. Fromhold, Jr., Phys. Rev. 139, A794 (1965).ADSCrossRefGoogle Scholar
  23. 19.
    A. M. Clogston, V. Jaccarnio, and Y. Yafet, Phys. Rev. 134, A650 (1964).ADSCrossRefGoogle Scholar
  24. 20.
    R. Kubo and Y. Obata, J. Phys. Soc. Japan 11, 547 (1956).ADSCrossRefGoogle Scholar
  25. 21.
    E. Ehrenfreund and T. H. Geballe, Phys. Rev. B 5, 758 (1972).ADSCrossRefGoogle Scholar
  26. 22.
    B. N. Ganguly, Phys. Rev. B 8, 1055 (1973).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • B. N. Ganguly
    • 1
  1. 1.Department of Physics and Materials Research LaboratoryUniversity of IllinoisUrbanaUSA

Personalised recommendations