Skip to main content

Tunneling Measurements of Electron Spin Effects in Superconductors

  • Chapter
Low Temperature Physics-LT 13

Abstract

Recent tunneling experiments have clarified the role of electron-spin effects in superconductors. Superconductor—normal metal tunneling experiments have shown that the quasi-particle states in Al are spin-split in a magnetic field, and that in Al the BCS assumption of opposite spin pairing is very nearly exact. The predictions of Sarma, Maki, Fulde, and others concerning a paramagnetically limited superconductor have been verified. Superconductor—superconductor tunneling has proved to be a sensitive measure of spin—orbit scattering, as predicted by Fulde and Engler, who have calculated the density of states for each spin direction for finite spin—orbit scattering. Superconducting—ferromagnetic tunneling has been used to measure the apparent spin density of states of ferromagnetic metals and in addition should allow the determination of the density of states of the superconductor for each spin direction even in the presence of spin—orbit scattering.

Invited paper.

Supported by the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. K. Yosida, Phys. Rev. 110, 769 (1958).

    Article  MathSciNet  ADS  Google Scholar 

  3. F. Reif, Phys. Rev. 106, 208 (1957).

    Article  ADS  Google Scholar 

  4. G. M. Androes and W. D. Knight, Phys. Rev. 121, 779 (1961).

    Article  ADS  Google Scholar 

  5. R. A. Ferrell, Phys. Rev. Lett. 3, 262 (1959).

    Article  ADS  Google Scholar 

  6. P. W. Anderson, Phys. Rev. Lett. 3, 325 (1959).

    Article  ADS  MATH  Google Scholar 

  7. A. A. Abrikosov and L. P. Gor’kov, Zh. Eksperim. i Teor. Fiz. 42, 1088 (1962)

    Google Scholar 

  8. A. A. Abrikosov and L. P. Gor’kov, Soviet Phys.—JETP 15, 752 (1962).

    Google Scholar 

  9. Y. Shapira and L. J. Neuringer, Phys. Rev. 140, A1638 (1965)

    Article  ADS  Google Scholar 

  10. R. R. Hake, Phys. Rev. Lett. 15, 865 (1965)

    Article  ADS  Google Scholar 

  11. T. G. Berlincourt and R. R. Hake, Phys. Rev. 131, 140 (1963)

    Article  ADS  Google Scholar 

  12. Y. B. Kim, C. F. Hempstead, and A. R. Strnad, Phys. Rev. 139, A1163 (1965).

    Article  ADS  Google Scholar 

  13. R. H. Hammond and G. M. Kelly, Rev. Mod. Phys. 36, 185 (1964).

    Article  ADS  Google Scholar 

  14. A. M. Clogston, Phys. Rev. Lett. 9, 266 (1962).

    Article  ADS  Google Scholar 

  15. B. S. Chandrasekhar, Appl. Phys. Lett. 1, 7 (1962).

    Article  ADS  Google Scholar 

  16. G. Sarma, J. Phys. Chem. Solids 24, 1029 (1963).

    Article  ADS  Google Scholar 

  17. K. Maki and T. Tsuneto, Prog. Theor. Phys. 31, 945 (1945)

    Article  ADS  Google Scholar 

  18. K. Maki, Prog. Theor. Phys. 32, 29 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  19. R. H. Hammond and G. M. Kelly, Phys. Rev. Lett. 18, 156 (1967)

    Article  ADS  Google Scholar 

  20. H. L. Fine, M. Lipsicas, and M. Strongin, Phys. Lett. 29A, 366 (1969).

    Article  Google Scholar 

  21. M. Strongin and O. F. Krammerer, Phys. Rev. Lett. 16, 456 (1966).

    Article  ADS  Google Scholar 

  22. A. L. Fetter and P. C. Hohenberg, in Superconductivity, R. Parks, ed. ( Marcel Dekker, New York, 1969 ), p. 883.

    Google Scholar 

  23. P. M. Tedrow, R. Meservey, and B. B. Schwartz, Phys. Rev. Lett. 24, 1004 (1970).

    Article  ADS  Google Scholar 

  24. K. Maki, Phys. Rev. 148, 362 (1966)

    Article  ADS  Google Scholar 

  25. N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).

    Article  ADS  Google Scholar 

  26. H. Engler and P. Fulde, Phys. Kondens. Materie 7, 150 (1968).

    ADS  Google Scholar 

  27. P. Fulde and R. A. Ferrell, Phys. Rev. 135, A550 (1964).

    Article  ADS  Google Scholar 

  28. R. Meservey and P. M. Tedrow, Phys. Rev. Lett. 25, 1270 (1970).

    Article  ADS  Google Scholar 

  29. H. Engler and P. Fulde (to be published).

    Google Scholar 

  30. P. M. Tedrow and R. Meservey, Phys. Rev. Lett. 27, 919 (1971).

    Article  ADS  Google Scholar 

  31. P. M. Tedrow and R. Meservey, Phys. Rev. Lett. 26, 192 (1971)

    Article  ADS  Google Scholar 

  32. R. Meservev and P. M. Tedrow. Solid State Comm. 11, 333 (1972).

    Article  ADS  Google Scholar 

  33. P. M. Tedrow and R. Meservey, Phys. Rev. B7, 318 (1973).

    Article  ADS  Google Scholar 

  34. P. M. Tedrow and R Meservey, this volume.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1974 Springer Science+Business Media New York

About this chapter

Cite this chapter

Meservey, R. (1974). Tunneling Measurements of Electron Spin Effects in Superconductors. In: Timmerhaus, K.D., O’Sullivan, W.J., Hammel, E.F. (eds) Low Temperature Physics-LT 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2688-5_69

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2688-5_69

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2690-8

  • Online ISBN: 978-1-4684-2688-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics