Anomalous Tunneling Characteristics

  • M. H. Frommer
  • R. M. Rose
  • M. L. A. MacVicar


Quasiparticle tunneling1 into superconducting transition metals often shows current—voltage characteristics differing from the ideal curves: an excess current peak or “knee” occurring at biases near the sum of the half-energy gaps of the two superconducting electrodes. In the present work we give evidence that this knee is probably caused by excess adsorbed oxygen in the oxide insulating barrier. Its presence and temperature and magnetic field dependence can be explained by a simple physical model considering impurity energy states in the junction barrier. The knee is most easily identified as an extra dip in the derivative of the characteristic (Fig. 1.).


Tunnel Junction Magnetic Field Dependence Massachusetts Institute ofTechnology Niobium Oxide Simple Physical Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Burstein and S. Lindquist, Tunneling Phenomena in Solids, Plenum Press, New York (1969).CrossRefGoogle Scholar
  2. 2.
    L.Y.L. Shen, in Proc. Conf.. Superconductivity in d-and f-Band Metals, D.H. Douglas, ed. AIP, New York (1972), p. 31.Google Scholar
  3. 3.
    L.F. Lou and W.J. Tomasch, Phys. Rev. Lett. 29, 858 (1972).ADSCrossRefGoogle Scholar
  4. 4.
    P.W. Wyatt, R.C. Barker, and A. Yelon, Phys. Rev. B (Dec. 1, 1972 ).Google Scholar
  5. 5.
    S.M. Freake and C.J. Adkins, Phys. Lett: 29A, 382 (1969); C.J. Adkins, private communication.ADSGoogle Scholar
  6. 6.
    D.H. Prothero, S.M. Freake, and C.J. Adkins, Physica 55, 744 (1971)ADSCrossRefGoogle Scholar
  7. D.H. Prothero, Ph.D. Thesis, University of Cambridge, 1971.Google Scholar
  8. 7.
    M.L.A. MacVicar and R.M. Rose, J. Appl. Phys. 39, 1721 (1968).ADSCrossRefGoogle Scholar
  9. 8.
    J.M. Dickey, H.H. Farrell, O.F. Kammerer, and M. Strongin, Phys. Lett. 32A, 483 (1970).CrossRefGoogle Scholar
  10. 9.
    T.W. Haas, A.G. Jackson, and M.P. Hooker, J. Chem. Phys. 46, 3025 (1967).ADSCrossRefGoogle Scholar
  11. 10.
    V.S. Ageikin, B.A. Chuikov, Yr. G. Ptushinskii, and N.P. Vasko, J. Vac. Sci. Technol. 9, 1241 (1972).ADSCrossRefGoogle Scholar
  12. 11.
    Y. Sasaki, J. Phys. Chem. Solids 13, 177 (1960).ADSCrossRefGoogle Scholar
  13. 12.
    I. Giaever and H.R. Zeller, J. Vac. Sci. Technol. 6, 502 (1969)ADSCrossRefGoogle Scholar
  14. J.C. Penley, Phys. Rev. 128, 596 (1962).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • M. H. Frommer
    • 1
  • R. M. Rose
    • 1
  • M. L. A. MacVicar
    • 2
  1. 1.Department of Metallurgy and Materials ScienceMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of PhysicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations