Dynamic Structure of Vortices in Superconductors: Three-Dimensional Features

  • Richard S. Thompson
  • Chia-Ren Hu


In previous papers1 we investigated the motion of vortices using the complete set of time-dependent Ginzburg—Landau equations appropriate for a superconductor containing a high concentration of paramagnetic impurities:
$$\gamma \left[ (\partial /\partial t)+i2e\psi \right]\Delta +{{\zeta }^{-}}^{2}({{\left| \Delta \right|}^{2}}-1)\Delta +{{\left[ (\nabla /i)-2eA \right]}^{2}}\Delta =0$$
$$j=\sigma (-\nabla \psi -\partial A/\partial t)+Re\left\{ \Delta *\left[ (\nabla /i2e)-A \right]\Delta \right\}/4\pi {{\lambda }^{2}}$$
$$\rho =(\psi -\varphi )/4\pi {{\lambda }^{2}}_{TF}$$
The Maxwell equations couple the current and charge j and p to the vector and scalar potentials A and φ.


Dissipation Rate Maxwell Equation Vortex Core Vortex Line Paramagnetic Impurity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.S. Thompson and C.-R. Hu, Phys. Rev. Lett. 27 1352 (1971)ADSCrossRefGoogle Scholar
  2. 2.
    R.S. Thompson and C.-R. Hu, Phys. Rev. B 6, 110 (1972); Phys. Rev. B 6, 2044 (1972).ADSCrossRefGoogle Scholar
  3. 3.
    G. Lasher, Phys. Rev. 154, 345 (1967).ADSCrossRefGoogle Scholar
  4. 4.
    J. Pearl, Appl. Phys. Lett. 5, 65 (1964).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • Richard S. Thompson
    • 1
  • Chia-Ren Hu
    • 1
  1. 1.Department of PhysicsUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations