Experimental Evidence for the Thompson Term in the Microwave Conductivity of Type II Superconductors

  • Y. Brunet
  • P. Monceau
  • G. Waysand


Based on the linear theory, Caroli and Maki1 calculated the electromagnetic response of a superconductor in the high-field region submitted to microwave radiation. They showed the existence of collective oscillations or fluctuations of the order parameter when the microwave field E. is perpendicular to the static magnetic field H. Their calculation was incorrect because at zero frequency they obtained an infinite conductivity which is not in accord with the flux flow experiments. Maki and Fischer2 extended the calculation in the surface sheath regime and found an anisotropy, i.e., the ratio between the slopes \({{S}_{l,tr}}=\left( H/{{R}_{n}} \right)\left( dR/dH \right)\left| _{H={{H}_{c3}}} \right.\) of the surface resistance near H c3 the longitudinal orientation (E(1),|| H) and the transverse orientation (E ω ⊥ H),depending on temperature. Thompson 3 4 corrected Caroli and Maki’s error by taking into account an extra term in the expression for the conductivity; he found that
$${s_{l,tr}} = \frac{1}{{2\pi }}\frac{{{\delta _n}}}{{\xi \left( t \right)}}\frac{1}{{2{\rm K}_2^2 - 0.334}}{f_{l,tr}}\left( {\omega ,t} \right)$$
where δ n is the normal-state skin depth and ζ(t) is the coherence length. The functions f l in the longitudinal orientation and f tr in the transverse orientation are plotted in Ref. 5 for different values of frequency. In Fig. 2 we plot the theoretical anisotropy A = f tr /f l , according to Thompson’s theory at 2.4 GHz. At low frequency ω ≪ ε o (t) ~ π(T c –T) (εo is the pair-breaking energy) the anisotropy is independent of temperature and is equal to 0.58. When ω > ε ω o (t) the oscillations of the order parameter cannot follow the exciting field and the anisotropy equals one. For higher frequencies5 ~ 10–30 GHz) the anisotropy is greater than one very close to T. and equals one at T =T c .


Static Magnetic Field Surface Resistance Microwave Field Transverse Orientation Electromagnetic Response 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Caroli and K. Maki, Phys. Rev. 159, 306 (1967).ADSCrossRefGoogle Scholar
  2. 2.
    K. Maki and G. Fischer, Phys. Rev. 184, 472 (1969).ADSCrossRefGoogle Scholar
  3. 3.
    R. S. Thompson, Phys. Rev. B 1, 327 (1970).ADSCrossRefGoogle Scholar
  4. 4.
    R. S. Thompson, Phys. Rev. B 3, 1617 (1971).ADSCrossRefGoogle Scholar
  5. 5.
    P. Monceau and J. le G. Gilchrist, J. Low Temp. Phys. 5, 363 (1971).ADSCrossRefGoogle Scholar
  6. 6.
    K. Maki, in Quantum Fluid, Tokyo Summer Institute for Theoretical and Experimental Physics, 1970, Syokabo.Google Scholar
  7. 7.
    G. Fischer, R. D. McConnell, P. Monceau, and K. Maki, Phys. Rev. B 2, 2817 (1970).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • Y. Brunet
    • 1
  • P. Monceau
    • 1
  • G. Waysand
    • 2
  1. 1.Centre de Recherches sur les Très Basses TempératuresCNRSGrenoble-CedexFrance
  2. 2.Laboratoire de Physique des SolidesUniversité de Paris-SudOrsayFrance

Personalised recommendations