Entropy of a Type II Superconductor in the Mixed State Close to Tc

  • R. Ehrat
  • L. Rinderer


The entropy per unit volume of a type II superconductor in the mixed state can be written in the following form: S(T, B) = S s (T) + ΔS(T, B), where S s (T) is the entropy in the Meissner state [HH cl (T)]. Using the constitutive relation between the three coordinates at equilibrium, B = B(T, H), we can write alternatively S(T, H) = S s (T) + ƊS(T, H). Three thermal quantities can be derived from the entropy S: the specific heat at constant field C H = C s (T) + T[S)/∂T] ∥ H , the specific heat at constant induction C B = C s (T) + T[S)/ T] ∣ B , and the incremental entropy of vortices S i = ϕ 0 [S/∂B] T o is the flux quantum).1 The following thermodynamic relation holds between the terms expressing the thermal contributions of the mixed state to these quantities:
$$\frac{\partial (\Delta S)}{\partial T}{{\left| _{H}-\frac{\partial (\Delta S)}{\partial T} \right|}_{B}}=4\pi {{\left[ \frac{\partial (\Delta S)}{\partial B}\left| _{r} \right. \right]}^{2}}\frac{\partial B}{\partial H}\left| _{r} \right.\ge 0$$


Mixed State Flux Quantum Thermal Contribution Differential Entropy Meissner State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. A. Otter, Jr., and G. B. Interna, Proc. Low Temp. Cal. Conf. (O. V. Lounasmaa, ed.), Ann. Acad. Sci. Fennicae 1966, 98–103.Google Scholar
  2. 2.
    R. Ehrat and L. Rinderer, J. Low Temp. Phys. 7 (5/6), 543 (1972).ADSGoogle Scholar
  3. 3.
    U. Krägeloh, Phys. Stat. Sol. 42, 559 (1970).ADSCrossRefGoogle Scholar
  4. 4.
    J. Auer and H Ullmaier, EPS Conf., Florence, 1971.Google Scholar
  5. 5.
    A. E. Jakobs, Phys. Rev. B 4 (9), 3022 (1971).Google Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • R. Ehrat
    • 1
  • L. Rinderer
    • 1
  1. 1.Institut de Physique de l’Université de LausanneLausanneSwitzerland

Personalised recommendations