Electronic Part of the Thermal Conductivity of a Thin, Superconducting Film Composed of Lead and Gadolinium

  • D. M. Ginsberg
  • B. J. Mrstik


There has been considerable interest in the properties of superconductors with paramagnetic impurities (localized spin). These impurities perturb the electrons in a way which is antisymmetric with respect to time reversal, and they therefore tend to break up the Cooper pairs in the superconductor.1 This pair-breaking effect can be used as a probe to investigate both the microscopic properties of the superconductor and the interactions between an impurity spin and the conduction electrons or other impurity spins. Any impurity spin ordering which occurs is expected to affect both the transition temperature2 and the thermal conductivity,3 which is the phenomenon of immediate interest in this investigation.


Thermal Conductivity Impurity Concentration Measured Thermal Conductivity Thermal Conductivity Ratio Paramagnetic Impurity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Maki, in Superconductivity, R. D. Parks, ed., Marcel Dekker, New York (1969), Vol. 2, p. 1035.Google Scholar
  2. 2.
    K. H. Bennemann, Phys. Rev. Lett. 17, 438 (1966).ADSCrossRefGoogle Scholar
  3. 3.
    K. H. Bennemann and F. M. Mueller, Phys. Rev. 176, 546 (1968).ADSCrossRefGoogle Scholar
  4. 4.
    V. Ambegaokar and A. Griffin, Phys. Rev. 137, A1151 (1965).ADSCrossRefGoogle Scholar
  5. 5.
    K. H. Bennemann, Phys. Lett. 14, 273 (1965).ADSGoogle Scholar
  6. 6.
    R. L. Cappelletti and D. K. Finnemore, Phys. Rev. 188, 723 (1969).ADSCrossRefGoogle Scholar
  7. 7.
    J. M. Mochel and R. D. Parks, Phys. Rev. Leu. 16, 1156 (1966).ADSCrossRefGoogle Scholar
  8. 8.
    J. E. Smith, Jr. and D. M. Ginsberg, Phys. Rev. 167, 345 (1968).ADSCrossRefGoogle Scholar
  9. 9.
    A. W. Bjerkaas, D. M. Ginsberg, and B. J. Mrstik, Phys. Rev. B5, 854 (1972).ADSGoogle Scholar
  10. 10.
    J. Bardeen, G. Rickayzen, and L. Tewordt, Phys. Rev. 113, 982 (1959).MathSciNetADSMATHCrossRefGoogle Scholar
  11. 11.
    M. A. Woolf and F. Reif, Phys. Rev. 137, A557 (1965).ADSCrossRefGoogle Scholar
  12. 12.
    S. Skalski, O. Betbeder-Matibet, and P. R. Weiss, Phys. Rev. 136, A1500 (1964).ADSCrossRefGoogle Scholar
  13. 13.
    G. J. Dick and F. Reif, Phys. Rev. 181, 774 (1969).ADSCrossRefGoogle Scholar
  14. 14.
    A. A. Abrikosov and L. P. Gor’kov, Zh. Eksperim. i Teor. Fiz. 39 1781 (1960) [Soviet Phys.—JETP 12, 1243 (1961)].Google Scholar
  15. 15.
    K. Schwidtal, Z. Phys. 158, 563 (1960).ADSCrossRefGoogle Scholar
  16. 16.
    B. J. Mrstik and D. M. Ginsberg, Phys. Rev. B 5, 1817 (1972).ADSCrossRefGoogle Scholar
  17. 17.
    D. J. Scalapino, in Superconductivity, R. D. Parks, ed., Marcel Dekker, New York (1969), Vol. 1, p. 449.Google Scholar
  18. 18.
    J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).MathSciNetADSMATHCrossRefGoogle Scholar
  19. 19.
    S. Bermon and D. M. Ginsberg, Phys. Rev. 135, A306 (1964).ADSCrossRefGoogle Scholar
  20. 20.
    R. F. Gasparovic, B. N. Taylor, and R. E. Eck, Sol. St. Commun. 4, 59 (1966).ADSCrossRefGoogle Scholar
  21. 21.
    B. Mühlschegel, Z. Phys. 155, 313 (1959).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • D. M. Ginsberg
    • 1
  • B. J. Mrstik
    • 1
  1. 1.Department of Physics and Materials Research LaboratoryUniversity of IllinoisUrbanaUSA

Personalised recommendations