Nuclear Spin-Lattice Relaxation in Impure Superconducting Indium

  • J. D. Williamson
  • D. E. Maclaughlin


The measured nuclear spin-lattice relaxation time T 1 in type I superconductors is always found to be greater than that calculated according to the simplest form of the BCS theory (see e. g., Ref. 1). This disagreement has been generally attributed to the singular behavior at the gap edge of the BCS density of excited quasiparticle states. In essence the singularity makes too many states available for thermal excitation, so that the calculated relaxation is too rapid. Any effect in real superconductors which broadens or redistributes excited states over a region in the neighborhood of the gap energy will thus tend to lengthen the nuclear relaxation time, and measurements of T 1 as a function of experimental conditions can be used to elucidate the nature of such broadening mechanisms.


Residual Resistivity Ratio Crystal Momentum Nuclear Relaxation Time Calculated Relaxation InPb Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. M. Ginsberg and L. C. Hebel, in Superconductivity, R. D. Parks, ed., Marcel Dekker, New York (1969), Vol. I, Chapter 4, pp. 233–249.Google Scholar
  2. 2.
    P. C. Hohenberg, Soviet Phys.—JETP 18, 834 (1964);Google Scholar
  3. J. R. Clem, Phys. Rev. 148, 392 (1966).ADSCrossRefGoogle Scholar
  4. 3.
    M. Fibich, Phys. Rev. Lett. 14, 561 (1965); 14, 621 (1965).Google Scholar
  5. 4.
    D. J. Scalapino, in Superconductivity, R. D. Parks, ed., Marcel Dekker, New York (1969), Vol. 1, Chapter 10, pp. 555–557.Google Scholar
  6. 5.
    D. J. Scalapino and T. M. Wu, Phys. Rev. Lett. 17, 315 (1966).ADSCrossRefGoogle Scholar
  7. 6.
    D. J. Scalapino and B. N. Taylor (unpublished).Google Scholar
  8. 7.
    Y. Masuda and A. G. Redfield, Phys. Rev. 125, 159 (1962).ADSCrossRefGoogle Scholar
  9. 8.
    Y. Masuda, Phys. Rev. 126, 1271 (1962).ADSCrossRefGoogle Scholar
  10. 9.
    J. Butterworth and D. E. MacLaughlin, Phys. Rev. Lett. 20, 265 (1968).ADSCrossRefGoogle Scholar
  11. 10.
    P. W. Anderson, J. Phys. Chem. Solids 11, 26 (1959).ADSCrossRefGoogle Scholar
  12. 11.
    J. D. Williamson and D. E. MacLaughlin (to be published).Google Scholar
  13. 12.
    J. D. Williamson and D. E. MacLaughlin, Phys. Rev. B 5, 2738 (1972).ADSCrossRefGoogle Scholar
  14. 13.
    R. Meservey and B. B. Schwartz, in Superconductivity, R. D. Parks, ed., Marcel Dekker, New York (1969), Chapter 3.Google Scholar
  15. 14.
    W. L. McMillan, Phys. Rev. 167, 331 (1968).ADSCrossRefGoogle Scholar
  16. 15.
    R. C. Dynes, Phys. Rev. B 2, 644 (1970); 4, 3255 (1971).Google Scholar
  17. 16.
    D. W. Taylor and P. Vashishta, Phys. Rev. B 5, 4410 (1972).ADSCrossRefGoogle Scholar
  18. 17.
    G. Bergmann, Z. Physik 228, 25 (1969).ADSCrossRefGoogle Scholar
  19. 18.
    S. A. Buckner, T. F. Finnegan, and D. N. Langenberg, Phys. Rev. Lett. 28, 150 (1972).ADSCrossRefGoogle Scholar
  20. 19.
    E. Riedel, Z. Naturforsch. 19a, 1634 (1964).ADSMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • J. D. Williamson
    • 1
  • D. E. Maclaughlin
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaRiversideUSA

Personalised recommendations