Resistance of Superconducting Alloys Near Tc as Caused by Vortex Structure Motion

  • L. P. Gor’kov
  • N. B. Kopnin


The microscopic theory of nonlinear nonstationary processes suggested by Gor’kov and Eliashberg1,2 has as its basis only the procedure of the analytical continuation of expressions in the BCS theory of superconductivity. Therefore in most cases it does not require an introduction of new parameters. The whole set of time-dependent equations is rather complicated and results in a number of non­trivial consequences dealing with relaxation processes, especially near the critical temperature. The classic object for application of nonlinear theory could be the motion of Abrikosov’s single vortex in superconductors, since nonlinear variation of the order parameter takes place at a given point of space while a vortex line is passing by it. The problem is extremely difficult to solve due to mathematical complications. It proved possible, nevertheless, to get an analytical solution for the slow motion of a vortex line in a homogeneous alloy (x ≫ 1) in the vicinity of T c We shall obtain the conductivity of a superconductor with vortex structure near T c and in magnetic fields HH c2.


Vortex Structure Vortex Core Vortex Line Homogeneous Alloy Average Electric Field 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L.P. Gor’kov and G.M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 54, 612 (1968).Google Scholar
  2. 2.
    L.P. Gor’kov and G.M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 56, 1297 (1969).Google Scholar
  3. 3.
    J. Bardeen and M.J. Stephen, Phys. Rev. 140, A1197 (1965).Google Scholar
  4. 4.
    G. Caroli and K. Maki, Phys. Rev. 164, 591 (1967); K. Maki, J. Low Temp. Phys. 1, 54 (1969); Y. Baba and K. Maki, Progr. Theoret. Phys. 44, 1431 (1970).Google Scholar
  5. 5.
    L.P. Gor’kov and N.B. Kopnin, Zh. Eksperim. i Teor. Fiz. 60, 2331 (1971).Google Scholar
  6. 6.
    M.Yu. Kuprijana and K.K.Lukcharev, Zh. Eksperim. i Teor. Fiz. Pisma 15, 349 (1972).Google Scholar
  7. 7.
    C.R. Hu and R.S. Thompson, preprint (1972).Google Scholar
  8. 8.
    G.M. Eliashberg, Zh. Eksperim. i Teor. Fiz. 55, 2443 (1968).Google Scholar
  9. 9.
    G. Eilenberger, Z. Physik 214, 195 (1968).ADSCrossRefGoogle Scholar
  10. 10.
    K.D. Usadel, Phys. Rev. Lett. 25, 507 (1970).ADSCrossRefGoogle Scholar
  11. 11.
    V.N. Gubankov, Fiz. Tverd. Tela Pisma (1972).Google Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • L. P. Gor’kov
    • 1
  • N. B. Kopnin
    • 1
  1. 1.Landau Institute for Theoretical PhysicsMoscowUSSR

Personalised recommendations