Advertisement

High-Resolution Magnetooptical Experiments on Magnetic Structures in Superconductors

  • H. Kirchner

Abstract

Magnetic structures in superconductors have been investigated for a long time.1 Generally, they were made visible by powder techniques which gave moderate resolution until Träuble and Essmann2 succeeded in improving the Bitter technique resolution by more than three orders of magnitude. In searching for a method for high-resolution observation of the kinetics of magnetic structures, the magnetooptical technique first introduced by Alers3 appeared to be most promising (Fig. 1). Employing the Faraday effect in a transparent paramagnetic material, contrast could be obtained only at the expense of the magnetooptical resolution which is of the order of the thickness of the paramagnetic material. Using cerium phosphate glasses, DeSorbo and Healy4 obtained a resolution of approximately 200 µm. The resolution could be improved by using evaporated thin magnetooptical films.5

Keywords

Intermediate State Magnetic Structure Critical Thickness Faraday Rotation Flux Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.D. Livingston and W. DeSorbo, in Superconductivity, Marcel Dekker, New York (1969), Vol. 2, p. 1235.Google Scholar
  2. 2.
    H. Träuble and U. Essmann, Phys. Stat. Sol. 18, 813 (1966).ADSCrossRefGoogle Scholar
  3. 3.
    P.B. Alers, Phys. Rev. 105, 104 (1957).ADSCrossRefGoogle Scholar
  4. 4.
    W. DeSorbo and W.A. Healy, Cryogenics 4, 257 (1964).CrossRefGoogle Scholar
  5. 5.
    H. Kirchner, Phys. Lett. 26A, 651 (1968).CrossRefGoogle Scholar
  6. 6.
    S. Methfessel, IEEE Trans. on Mag. Vol. MAG-1(3), 144 (1965).Google Scholar
  7. 7.
    J.C. Suits, IEEE Trans. on Mag. Vol. MAG-8(1), 95 (1972).Google Scholar
  8. 8.
    F. Haenssler and L. Rinderer, Helv. Phys. Acta 40, 659 (1967).Google Scholar
  9. 9.
    H. Kirchner, in Proc. 11th Intern. Conf. Low Temp. Phys., 1968, St. Andrews Univ. Press, St. Andrews, Scotland (1969), Vol. II, p. 815.Google Scholar
  10. 10.
    H. Kirchner, Rev. Sci. Instr. 44, 379 (1973).ADSCrossRefGoogle Scholar
  11. 11.
    C. Chen, J.F. Ready, and G. Bernal, J. Appl. Phys. 39, 3916 (1968).ADSCrossRefGoogle Scholar
  12. 12.
    H. Kirchner, Phys. Lett. 30A, 437 (1969).CrossRefGoogle Scholar
  13. 13.
    H. Kirchner (to be published).Google Scholar
  14. 14.
    H. Kirchner (to be published).Google Scholar
  15. 15.
    H. Kirchner, Research Film 8, 21 (1973).Google Scholar
  16. 16.
    L.D. Landau, Phys. Z. Sowjet. 11, 129 (1937).MATHGoogle Scholar
  17. 17.
    L.D. Landau, Nature 141, 688 (1938).ADSCrossRefGoogle Scholar
  18. 18.
    A. Hubert, Phys. Stat. Sol. 24, 669 (1967).ADSCrossRefGoogle Scholar
  19. 19.
    M. Tinkham, Phys. Rev. 129, 2413 (1963).ADSCrossRefGoogle Scholar
  20. 20.
    G. Lasher, Phys. Rev. 154, 345 (1967).ADSCrossRefGoogle Scholar
  21. 21.
    E.M. Lifshitz and Yu.V. Sharvin, Doklady Akad. Nauk 79, 783 (1951).Google Scholar
  22. 22.
    H. Kirchner, Siemens Res. Rep. 1, 39 (1971).Google Scholar
  23. 23.
    T.E. Faber and A.B. Pippard, Progr. Low Temp. Phys. 1, 159 (1955).CrossRefGoogle Scholar
  24. 24.
    B. König and H. Kirchner, Frühjahrstagung der deutschen Phys. Ges., Freudenstadt, 1972.Google Scholar
  25. 25.
    R.N. Goren, Technical Report No. 2, Harvard University, 1970.Google Scholar
  26. 26.
    H. Kirchner and A. Kiendl, Phys. Lett. 39A, 293 (1972).CrossRefGoogle Scholar
  27. 27.
    P.R. Solomon and R.E. Harris, in Proc. 12th Intern. Conf.. Low Temp. Phys., 1970, Academic Press of Japan, Tokyo (1971), p. 475.Google Scholar
  28. 28.
    R. Olafson, Thesis, St. Andrews, unpublished.Google Scholar
  29. 29.
    H. Kirchner, Phys. Stat. Sol. (a) 4, 531 (1971).ADSCrossRefGoogle Scholar
  30. 30.
    A. Kiendl and H. Kirchner, Frühjahrstagung der deutschen Phys. Ges., Freudenstadt, 1972.Google Scholar
  31. 31.
    N.V. Sarma, Phil. Mag. 18, 171 (1968).ADSCrossRefGoogle Scholar
  32. 32.
    U. Krägeloh, Phys. Lett. 28A, 657 (1969).CrossRefGoogle Scholar
  33. 33.
    P. Laeng and L. Rinderer, Cryogenics 12, 315 (1972).CrossRefGoogle Scholar
  34. 34.
    A. Kiendl and H. Kirchner, J. Low Temp. Phys. 14, 349 (1974).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • H. Kirchner
    • 1
  1. 1.Forschungslaboratorien der Siemens AGMunichGermany

Personalised recommendations