Advertisement

Superconducting Properties of Crystalline Films of Aluminum on Silicon

  • Myron Strongin
  • O. F. Kammerer
  • H. H. Farrell
  • J. E. Crow

Abstract

For some years the properties of disordered and ultrathin films have been the subject of active investigation (see, e.g., Refs. 1). Until the work reported here there have been, as far as we know, no investigations of superconductivity in well-ordered and well-characterized ultrathin films. Perhaps the most significant feature of the present results is that the transition temperature of the Al films is not very much higher than the bulk value, even down to thicknesses near 30 Å. Films evaporated with more gas have higher T c ’s and films oxidized by exposure to air also have increased T c ’s. Another interesting feature of these results is the effect of the initial stages of nucleation on the film properties. Films grown epitaxially have lower R than films that are less crystalline. However, although the higher-resistance films have broader transitions, the T c ’s are the same. These experiments will be described more fully later.

Keywords

Silicon Surface Ultrathin Film Crystalline Film Evaporation Time Broad Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Buckel and R. Hilsch, Z. Physik 138, 109 (1954)ADSCrossRefGoogle Scholar
  2. I. S. Khukhareva, Zh. Eksperim. i Teor. Fiz,43 1173 (1962) Soviet Phys.—JETP 16 828 (1963)]Google Scholar
  3. M. Strongin, O. F. Kammerer, and A. Paskin, Phys. Rev. Lett. 14, 949 (1965)ADSCrossRefGoogle Scholar
  4. B. Abeles, R. W. Cohen, and G. W. Cullen, Phys. Rev. Lett. 17, 632 (1966).ADSCrossRefGoogle Scholar
  5. 2.
    J.J. Lander and J. Morrison, Surface Sci. 2 553 (1964).Google Scholar
  6. 3.
    M. Strongin, O. F. Kammerer, and A Paskin, Phys. Rev. Lett. 14, 949 (1965)Google Scholar
  7. P. N. Chubov, V. V. Eremenko, and Yu. A. Pilipenko, Soviet Phys.—JETP 28, 389 (1969)ADSGoogle Scholar
  8. R. Meservey and P. M. Tedrow, J. Appl. Phys. 42, 51 (1971)ADSCrossRefGoogle Scholar
  9. O. A. E. Cherney and J. Shewchun, Can. J. Phys. 47, 1101, (1969).ADSCrossRefGoogle Scholar
  10. 4.
    M. Strongin, O. F. Kammerer, J. E. Crow, R. D. Parks, D. H. Douglass Jr., and M. A. Jensen, Phys. Rev. Lett. 21, 1320 (1968)ADSCrossRefGoogle Scholar
  11. J. W. Garland, K. H. Benneman, and F. M. Mueller, Phys. Rev. Len. 21, 1315 (1968).ADSCrossRefGoogle Scholar
  12. 5.
    G. J. Thomson and J. M. Blatt, Phys. Lett. 5, 6 (1963)ADSCrossRefGoogle Scholar
  13. A. Paskin and A. D. Singh, Phys. Rev. 140, A1965 (1965)ADSCrossRefGoogle Scholar
  14. V. J. Kresin and B. A. Tavger, Zh. Eksperim. i Teor. Fiz. 50 1689 (1966) [Soviet Phys.JETP 23 1124 (1966)].Google Scholar
  15. 6.
    A. Fontaine and F. Meunier, Phys. Kondens. Materie 14, 119 (1972).ADSGoogle Scholar
  16. 7.
    J. P. Hurault, J. Phys. Solids 29, 1765 (1968).ADSCrossRefGoogle Scholar
  17. 8.
    M. Strongin and O. F. Kammerer, unpublished; mentioned in M. Strongin, O. F. Kammerer, J. E. Crow, R. D. Parks, D. H. Douglass, Jr., and M. A. Jensen, Phys. Rev. Lett. 21, 1320 (1968).Google Scholar
  18. 9.
    V. L. Ginzburg, Contemp. Phys. 9, 355 (1968).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • Myron Strongin
    • 1
  • O. F. Kammerer
    • 1
  • H. H. Farrell
    • 1
  • J. E. Crow
    • 1
  1. 1.Brookhaven National LaboratoryUptonUSA

Personalised recommendations