Advertisement

The Upper Critical Field and the Density of States in Amorphous Superconductors

  • G. Bergmann

Abstract

A number of superconductors can be obtained in the amorphous state by quenched condensation onto a substrate at He temperature.1 The specific resistance of these amorphous metals is almost identical to the resistance of the corresponding liquid metals. It was shown by electron diffraction 2–4 that the ordering range is not longer than a few atoms, just as in the liquid metals. For several reasons it is rather interesting to measure the upper critical field of the amorphous superconductors. First, the mean free path of the electrons is of the order of atomic distances. Therefore we expect rather large critical fields B c2 . Second, the amorphous superconductors are strong coupling5 and we want to look for strong coupling effects in the temperature behavior of B c2 . Third, the initial slope of the B c2 (T) curve yields the density of states at the Fermi surface
$$N=\frac{\pi }{4}\frac{d{{B}_{c2}}/dT}{{{K}_{B}}e\rho }$$
(1)
where kB is the Boltzmann constant, e is the elementary charge, and ρ is the residual resistivity.

Keywords

Liquid Metal Fermi Surface Critical Field Initial Slope Transition Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Buckel and R. Hilsch, Z. Physik 138, 109 (1954).ADSCrossRefGoogle Scholar
  2. 2.
    W. Buckel, Z. Physik 138, 136 (1954).ADSCrossRefGoogle Scholar
  3. 3.
    S. Fujime, Japan J. Appl. Phys. 5, 764 (1966).ADSCrossRefGoogle Scholar
  4. 4.
    S. Fujime, Japan J. Appl. Phys. 5, 778 (1966).ADSCrossRefGoogle Scholar
  5. 5.
    G. von Minnigerode and J. Rothenberg, Z. Physik 213, 397 (1968).ADSCrossRefGoogle Scholar
  6. 6.
    N. V. Zavaritskii, Soviet Phys.-JETP Lett. 5, 352 (1967).ADSGoogle Scholar
  7. 7.
    R. Knorr and N. Barth, J. Low Temp. Phys. 4, 469 (1971).ADSCrossRefGoogle Scholar
  8. 8.
    J. D. Leslie, J. T. Chen, and T. T. Chen, Can. J. Phys. 48, 2783 (1970).ADSCrossRefGoogle Scholar
  9. 9.
    J. E. Jackson, C. V. Briscoe, and H. Wühl, Physica 55, 447 (1971).ADSCrossRefGoogle Scholar
  10. 10.
    K. Maki, Physica 1, 21 (1964).Google Scholar
  11. 11.
    E. Helfand and N. R. Werthamer, Phys. Rev. 147, 288 (1965).Google Scholar
  12. 12.
    C. Caroli, M. Cyrat, and P. G. de Gennes, Sol. St. Commun. 4, 17 (1966).ADSCrossRefGoogle Scholar
  13. 13.
    K. Maki, Phys. Rev. 148, 362 (1966).ADSCrossRefGoogle Scholar
  14. 14.
    N. R Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147 295 (1966).Google Scholar
  15. 15.
    G. Eilenberger, Phys. Rev. 153, 584 (1967).ADSCrossRefGoogle Scholar
  16. 16.
    G. Bergmann, W. Kolar and H. Werner, Z. Physik 247, 252 (1971).ADSCrossRefGoogle Scholar
  17. 17.
    N. R Werthamer and W. L. McMillan, Phys. Rev. 158 415 (1967).Google Scholar
  18. 18.
    G. Eilenberger and V. Ambegaokar, Phys. Rev. 158, 332 (1967).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • G. Bergmann
    • 1
  1. 1.Institut für FestkörperforschungKernforschungsanlage JülichGermany

Personalised recommendations