Modification of Surface Mode Frequencies and Superconductivity Tc by Adsorbed Layers

  • D. G. Naugle
  • J. W. Baker
  • R. E. Allen


There is evidence that the enhancement of the superconducting transition temperature T c in amorphous or disordered films1 is caused by a decrease in the phonon frequencies relative to those in the bulk2,3 or, alternatively, by a change in the electron-phonon coupling constant α 2 (ω) relative to that in the bulk.4,5 It has been suggested that true surface phonons† as well as disorder may be responsible for the enhancement in sufficiently thin films,6,7 and theoretical calculations for model films7,8 lend support to this hypothesis. However, no unambiguous experimental evidence has been reported in favor of this hypothesis,‡ and in recent studies9,10 it has been emphasized that neither surface phonons nor any mechanism other than disorder within the films is needed to explain the experimental results.


Transition Curve Effective Force Residual Resistance Surface Phonon Clean Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Buckel and R. Hilsch, Z. Physik 138, 109 (1954).ADSCrossRefGoogle Scholar
  2. 2.
    J.W. Garland, K.H. Bennemann, and F.M. Mueller, Phys. Rev. Leu. 21, 1315 (1968)ADSCrossRefGoogle Scholar
  3. 3.
    T.T. Chen, J.T. Chen, J.D. Leslie, and H.J.T. Smith, Phys. Rev. Lett. 22, 526 (1969)ADSCrossRefGoogle Scholar
  4. 4.
    S. Ewert, Z. Physik 237, 47 (1970).ADSCrossRefGoogle Scholar
  5. 5.
    G. Bergmann, Phys. Rev. B 3, 3797 (1971).ADSCrossRefGoogle Scholar
  6. 6.
    M. Stongin, O.F. Kammerer, J.E. Crow, R.D. Parks, D.H. Douglass, and M.A. Jensen, Phys. Rev Lett. 21, 1320 (1968).ADSCrossRefGoogle Scholar
  7. 7.
    J.M. Dickey and A. Paskin, Phys. Rev. Lett. 21, 1441 (1968).ADSCrossRefGoogle Scholar
  8. 8.
    R.E. Allen and F.W. de Wette, Phys. Rev. 187, 883 (1969).ADSCrossRefGoogle Scholar
  9. 9.
    J.J. Hauser, Phys. Rev. B 3, 1611 (1971).ADSCrossRefGoogle Scholar
  10. 10.
    P. Townsend, S. Gregory, and R.G. Taylor, Phys. Rev. B 5, 54 (1972).ADSCrossRefGoogle Scholar
  11. 11.
    W. Rúhl, Z. Physik 186, 190 (1965).ADSCrossRefGoogle Scholar
  12. 13.
    R.E. Glover and M.D. Sherrill, Phys. Rev. Leu. 5,248 (1960).Google Scholar
  13. 13.
    R.S. Mulliken, J. Am. Chem. Soc. 74, 811 (1952).CrossRefGoogle Scholar
  14. 14.
    J.C.P. Mignolet, J. Chem. Phys. 21, 1298 (1953).ADSCrossRefGoogle Scholar
  15. 15.
    R.S. Williams, Ph.D. Dissertation, Univ. of Maryland, College Park, Maryland (1970).Google Scholar
  16. 16.
    W. Rtihl, Z. Physik 159, 428 (1960).ADSCrossRefGoogle Scholar
  17. 17.
    W. Felsch and R.E. Glover, Bull. Am. Phys. Soc. 17, 290 (1972).Google Scholar
  18. 18.
    R.E. Glover, S.K. Ghosh, and W.E. Daniels, in Basic Problems in Thin Film Physics, R. Niedermayer and H. Mayer, eds., Vandenhoeck and Ruprecht, Göttingen (1966), p. 536.Google Scholar
  19. 19.
    E.A. Shapoval, Zh. Eksperim. i Teor. Fia-. Pisma v Redaktsiyv 5, 57 (1967) [Soviet Phys.—JETP Lett. 5,45 (1967)].Google Scholar
  20. 20.
    W.L. McMillan, Phys. Rev. 167, 331 (1968).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • D. G. Naugle
    • 1
  • J. W. Baker
    • 1
  • R. E. Allen
    • 1
  1. 1.Department of PhysicsTexas A& M UniversityCollege StationUSA

Personalised recommendations