Advertisement

Experimental Evidence for an Atomic-like Parameter Characterizing the Systematics of Superconductivity in the Transition Metals

  • R. H. Hammond
  • M. M. Collver

Abstract

In a recently published paper1 we have presented experimental data on the superconducting critical temperature T c of amorphous transition metals (elements and alloys of neighboring elements) for the 4d and 5d series. We suggested that the data are consistent with the presence of a parameter first introduced by Hopfield,2 which characterizes the systematics of superconductivity in the transition metal (TM) series.‡ An unexpected result, however, is that the data indicate that this parameter η has a sharp triangular peak in the center of the d series at five d electrons per atom. This occurs for the 4d TM series at an electron-to-atom ratio e/a of 6.4. This behavior is contrary to the predictions of Bennemann and Garland,3 in which η has a smooth maximum on the right side of the TM series. In this paper we discuss other evidence, using data in the literature for the crystalline TM, indicating that η has a peak in the center of the 4d series.

Keywords

Cohesive Energy Dielectric Response Function General Motor Research Laboratory Transition Metal Series Smooth Maximum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.M. Collver and R.H. Hammond, Phys. Rev. Lett. 30, 92 (1973);ADSCrossRefGoogle Scholar
  2. R.H. Hammond and M.M. Collver, LRL, University of California, Berkeley, UCRL-20500 (1970), p. 137.Google Scholar
  3. 2.
    J.J. Hopfield, Phys. Rev. 186, 443 (1969).ADSCrossRefGoogle Scholar
  4. 3.
    K.H. Bennemann and J.W. Garland, in Superconductivity in d-and f-Band Metals, D.H. Douglass, ed. AIP Conf. Proc. No. 4, American Institute of Physics, New York (1972), p. 103.Google Scholar
  5. 4.
    W.L. McMillan, Phys. Rev. 167, 331 (1968).ADSCrossRefGoogle Scholar
  6. 5.
    B.N. Ganguly and R.F. Wood, Phys. Rev. Lett. 28, 681 (1972).ADSCrossRefGoogle Scholar
  7. 6.
    J.M. Ziman, Principles of the Theory of Solids, Cambridge Univ. Press (1965), p. 129.Google Scholar
  8. 7.
    K.A. Gschneidner, in Solid State Physics, Vol. 16, Academic Press, New York (1964), p. 275.Google Scholar
  9. 8.
    S. Barisic, J. Labbé, and J. Friedel, Phys. Rev. Lett. 25, 919 (1970).ADSCrossRefGoogle Scholar
  10. 9.
    J. Griffith, J. Inorg. Nucl. Chem. 3, 15 (1956);CrossRefGoogle Scholar
  11. D.S. McClure, in Some Aspects of Crystal Field Theory, T.M. Dunn, D.S. McClure, and R.G. Pearson, Harper and Row, New York (1965), Chapter 4, p. 89;Google Scholar
  12. R.E. Watson and H. Ehrenreich, Comments on Solid State Physics Blll (1970).Google Scholar
  13. 10.
    E.W. Plummer and T.N. Rhodin, J. Chem. Phys. 49, 3479 (1968).ADSCrossRefGoogle Scholar
  14. 11.
    D.M. Newns, Phys. Rev. Lett. 25, 1575 (1970).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • R. H. Hammond
    • 1
    • 3
  • M. M. Collver
    • 2
  1. 1.W. W. Hansen Laboratories of PhysicsStanford UniversityStanfordUSA
  2. 2.General Motors Research LaboratoryWarrenUSA
  3. 3.Supported in part by the National Science Foundation and the Advanced Research Projects Agency through the Center for Materials Research at Stanford UniversityStanfordUSA

Personalised recommendations