The Influence of Dissolved Hydrogen on the Superconducting Properties of Molybdenum

  • B. D. Bhardwaj
  • H. E. Rorschach


Baldwin1 found that molybdenum becomes brittle on addition of dissolved hydrogen and exhibits ductility curves typical of the alloys of hydrogen with bcc transition metals. The popular theories2 of “hydrogen embrittlement” associate this interesting phenomenon with one or more of the following mechanisms: stresses due to hydrogen gas precipitation in voids and cracks; the reduction of surface free energy on hydrogen adsorption; reduced cohesive energy on hydrogen solution. All these theories are based essentially on the observed mechanical properties. We undertook a study of the influence of dissolved hydrogen on the superconducting properties of molybdenum to obtain information about the effects of interstitial hydrogen on the electronic properties of the host metal and their correlation with its mechanical behavior.


Hydrogen Embrittlement Critical Field Hydrogen Diffusion Superconducting Property Hydrogen Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W.M. Baldwin, The Metal Molybdenum, ASM (1957), p. 279.Google Scholar
  2. 2.
    D.P. Williams and H.G. Nelson, Met. Trans. 2, 1987 (1971).Google Scholar
  3. 3.
    D.P. Seraphim, D.T. Novick, and J.I. Budnick, Acta. Met. 9, 446 (1961).CrossRefGoogle Scholar
  4. 4.
    W. DeSorbo, J. Phys. Chem. Solids 15, 7 (1960); Phys. Rev. 130, 2177 (1963).ADSCrossRefGoogle Scholar
  5. 5.
    P.W. Anderson, J. Phys. Chem. Solids 11, 26 (1959); D. Markowitz and L.P. Kadanoff, Phys. Rev. 131, 563 (1963).CrossRefGoogle Scholar
  6. 6.
    J.R. Clem, Ann. Phys. 40, 268 (1966); Phys. Rev. 153, 449 (1967).ADSCrossRefGoogle Scholar
  7. 7.
    M.L. Hill, J. Metals 12, 725 (1960).Google Scholar
  8. 8.
    R.G. Mallon, Ph.D. Thesis, Rice University, 1966; R.G. Mallon and H. E. Rorschach, Jr., Phys. Rev. 158, 418 (1967).ADSCrossRefGoogle Scholar
  9. 9.
    C. Blake and C.E. Chase, Rev. Sci. Instr. 34, 984 (1963).ADSCrossRefGoogle Scholar
  10. 10.
    D.G. Pinatti, Ph.D. Thesis, Rice University, 1969.Google Scholar
  11. 11.
    M.D. Maloney, F. de la Cruz, and M. Cardona, Phys. Rev. B 2, 2512 (1970).ADSCrossRefGoogle Scholar
  12. 12.
    R.A. French, Phys. Stat. Sol. 21, K35 (1967).ADSCrossRefGoogle Scholar
  13. 13.
    B.T. Matthias, T.H. Geballe, E. Corenzwit, and G.W. Hull, Jr., Phys. Rev. 129, 1025 (1963).ADSCrossRefGoogle Scholar
  14. 14.
    G. Gladstone, M.A. Jensen, and J.R. Schreiffer, Superconductivity in the Transition Metals, in Superconductivity, R.D. Parks, ed., Marcel Dekker, Parks, New York., (1969), Vol. 2, p. 715.Google Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • B. D. Bhardwaj
    • 1
  • H. E. Rorschach
    • 1
  1. 1.Rice UniversityHoustonUSA

Personalised recommendations