A Survey of Superconducting Materials

  • J. K. Hulm
  • R. D. Blaugher


This paper provides an overview of superconducting materials for nonspecialists in this currently very active field of research. Several new classes of materials have emerged in the past two or three years, and some of them offer promise of higher critical temperatures—although new records have not yet been achieved. Several of the hydrides of the transition metals have recently been found to be superconducting, for example, thorium hydride, Th4H 15, discovered by Satterthwaite and co-workers1 at the University of Illinois. Hydrogen has also been introduced into palladium by ion implantation; the system becomes superconducting close to 10°K.2 Another interesting class of superconductors involves layer compounds, such as tantalum disulfide, which were shown to have very interesting asymmetric superconducting characteristics by Geballe and co-workers at Stanford.3 Recently Matthias and coworkers4 have discovered a new ternary group, typified by LiTiS2, in which critical temperatures as high as 17°K have already been achieved. All these materials are discussed elsewhere in this volume and we shall not elaborate on them here.


Critical Temperature Superconducting Material High Critical Temperature Apply Superconductivity Lattice Softening 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. B. Satterthwaite and D. T. Peterson, J. Less Common Metals 26, 361 (1972).CrossRefGoogle Scholar
  2. 2.
    W. Buckel, private communication.Google Scholar
  3. 3.
    F. R. Gamble, F. J. DiSalvo, R. A. Klemm, and T. H. Geballe, Science 168, 568 (1970).ADSCrossRefGoogle Scholar
  4. 4.
    H. E. Barz, A. S. Cooper, E. Corenzwit, M. Marezio, B. T. Matthias, and R. H. Schmidt, Science 175, 884 (1972).ADSCrossRefGoogle Scholar
  5. 5.
    W. Meissner and H. Franz, Z. Physik. 65, 30 (1930).ADSCrossRefGoogle Scholar
  6. 6.
    B. T. Matthias and J. K. Hulm, Phys. Rev. 82, 273 (1950); 87, 799 (1952).ADSCrossRefGoogle Scholar
  7. 7.
    J. K. Hulm and R. D. Blaugher, in Proc. 1971 Rochester Conf on d-and f-Band Superconductors, American Institute of Physics, New York (1972).Google Scholar
  8. 8.
    J. E. Kunzler, E. Buehler, F. S. L. Hsu, and J. H. Wernick, Phys. Rev. Lett. 6, 89 (1961).ADSCrossRefGoogle Scholar
  9. 9.
    C. J. Mole, T. J. Fagan, H. E. Haller, D. C. Litz, and A. Patterson, in Proc. 1972 Cyrogenic Eng. Conf., Boulder, Colorado.Google Scholar
  10. 10.
    G. Gladstone, M. A. Jensen, and J. R. Schrieffer, in Superconductivity, J. R. Parks, ed., Marcel Dekker, New York (1969), vol. 2, Chapter 13.Google Scholar
  11. 11.
    J. R. Gavaler, M. A. Janocko, and C. K. Jones, in Proc. Applied Superconductivity Conf., Annapolis, Md., 1972.Google Scholar
  12. 12.
    L. D. Hortsough and R. H. Hammond, Sol. St. Comm. 9, 885 (1971).ADSCrossRefGoogle Scholar
  13. 13.
    G. W. Webb, L. J. Vieland, R. E. Miller, and A. Wicklund, Sol. St. Comm. 9, 1769 (1971).ADSCrossRefGoogle Scholar
  14. 14.
    D. W. Deis, R. D. Blaugher, J. K. Hulm, and J. R. Gavaler, Proc. Applied Superconductivity Conf., Annapolis, Md., 1972.Google Scholar
  15. 15.
    L. F. Mattheiss, Phys. Rev. 138, A112 (1965).ADSCrossRefGoogle Scholar
  16. 16.
    J. Labbé and J. Friedel, J. Physique 27, 153, 303 (1966).Google Scholar
  17. 17.
    M. Weger, Rev. Mod. Phys. 36, 175 (1964).ADSCrossRefGoogle Scholar
  18. 18.
    B. W. Batterman and C. S. Barrett, Phys. Rev. Lett. 13, 390 (1964).ADSCrossRefGoogle Scholar
  19. 19.
    L. R. Testardi, W. A. Reed, T. B. Bateman, and V. G. Chirba, Phys. Rev. Lett. 15, 250 (1965).ADSCrossRefGoogle Scholar
  20. 20.
    K. R. Keller and J. J. Hanak, Phys. Lett. 21, 263 (1966).ADSCrossRefGoogle Scholar
  21. 21.
    L. R. Testardi and L. F. Mattheiss, see Ref. 16.Google Scholar
  22. 22.
    L. R. Testardi, Phys. Acoustics (to be published).Google Scholar
  23. 23.
    L. J. Vieland and A. W. Wicklund, Phys. Lett. 34A, 43 (1971).CrossRefGoogle Scholar
  24. 24.
    R. W. Cohen, G. D. Cody, and J. J. Halloran, Phys. Rev. Leu. 19, 840 (1967).ADSCrossRefGoogle Scholar
  25. 25.
    A. Junod, J. L. Staudermann, J. Muller, and P. Spitzli, J. Low Temp. Phys. 5, 25 (1971).ADSCrossRefGoogle Scholar
  26. 26.
    R. A. Hein, J. E. Cox, R. D. Blaugher, R. M. Waterstrat, and E. C. van Reuth, Physica 55, 523 (1971).ADSCrossRefGoogle Scholar
  27. 27.
    P. Spitzli, R. Flukiger, F. Heiniger, A. Junod, J. Muller, and J. L. Staudermann, J. Phys. Chem. Solids 31, 1531 (1970).ADSCrossRefGoogle Scholar
  28. 28.
    T. F. Smith, J. Low Temp. Phys. 6, 171 (1972).ADSCrossRefGoogle Scholar
  29. 29.
    R. D. Blaugher, A. Taylor, and M. Ashkin (to be published).Google Scholar
  30. 30.
    K. Tachikawa, in Proc. 3rd Intern. Conf. Cryogenic Eng., ICEC-3, Berlin (1970), p. 339.Google Scholar

Copyright information

© Springer Science+Business Media New York 1974

Authors and Affiliations

  • J. K. Hulm
    • 1
  • R. D. Blaugher
    • 1
  1. 1.Westinghouse Research LaboratoriesPittsburghUSA

Personalised recommendations