Advertisement

Shock Tube Studies of the Hydrogen—Oxygen Reaction System

  • G. L. Schott
  • R. W. Getzinger

Abstract

The shock tube is one of the most useful experimental tools currently available to the chemical kineticist for the study of fast reactions in gases, particularly at temperatures above those achievable statically in laboratory apparatus. When coupled with one or more of a great variety of appropriate diagnostic methods, it is well-suited for the study of chemical processes taking place over the approximate range from 10−6 to 10−3 seconds. Shock wave methods to study chemical reactions and related time-dependent phenomena have been described in the literature throughout the 1950’s and 1960’s, and the techniques and many of the important experimental results are described in a number of excellent books1 and recent review articles.2–4 Notwithstanding the concern for aerodynamic nonidealities in shock tube flows which is increasing conspicuously at the time of this writing, and for the quantitative corrections which these effects make necessary, shock tubes are now a well-established means for obtaining information on chemical reaction rates in thermally perturbed homogeneous systems.

Keywords

Shock Wave Induction Period Shock Tube Rate Coefficient Partial Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Nomenclature

A

Absorbance

A

Constant factor in expression \(\mathop{K}_{j}^{\mathop{M}_{i}}=\mathop{AT}^{-m}\)

A, B, A’, B’

Constants describing induction period lengths

AjBj,Cj

General notation for reactive species

0, a, b, c, d, e, f, g, h, 1,m, n

Index notation for elementary reactions

C

General chain centre concentration

Ci

Chain centre concentration at end of ignition delay

C

Number of independent chemical elements

Eact

Activation energy

FR, FL

Functions describing species concentrations in rich, lean mixtures

f

Specific rate of chain branching

ΔG°

Standard free energy change

g

Specific termination rate

ΔH°

Standard enthalpy change

ΔH0°

Standard enthalpy change at 0 K

I

Chemical symbol for generic primary intermediates OH, H and O (not iodine)

Iv°

Incident spectral intensity at v

Ka, Kb, K, Kd

Equilibrium constants

KII, KIII, KIV

Equilibrium constants

Ka, Kb, Kc, Kf

Product of specific rate coefficient and one or more concentrations

k, kapp, kj, \(\mathop{k}_{j}^{\mathop{M}_{i}}\), kp, ks, kcoll,kprop

Specific rate coefficients

L

Path length

M

Chemical symbol for generic collision partner

M0

Initial mean molecular weight

m

Exponent describing temperature dependence of rate coefficient \(\mathop{k}_{j}^{\mathop{M}_{i}}\)

N

Mole number

Ni

Partial mole number of species i

Nic

Initial partial mole number of species i

Nι

Population of absorber in a specific internal energy state

Neq

Value of N at full equilibrium

N0

Total population of absorber

P

Total absorption coefficient at y

Pv(ι)

Contribution to P, from single line

p

Pressure

p0

Unshocked gas pressure

R

Chemical symbol for generic reactive species formed in reactions (0) and (h)

R

Gas constant

Rassoc

Net rate of recombination

R

Number of independent reaction steps

R(j)

Rate of elementary reaction denoted by index j

ΔS°

Standard entropy change

S

Total number of species

T

Temperature

T0

Unshocked gas temperature

Tι

Explosion limit temperature

TR

Fractional transmission

t

Time

ti

Induction time

x, y

General exponents

α

Ratio [OH] / [H]

εeff

Extinction coefficient

η

Initial hydrogen:oxygen ratio

θ

Initiation rate

ν

Spectral frequency;Dimensionless recombination progress variable

ρ

Gas density

ρ0

Initial gas density

τ

Laboratory time

ø

Exponential growth coefficient

I, II, III, IV

Stoichiometric equations for chemical reaction

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. N. Bradley, Shock Waves in Chemistry and Physics ( John Wiley and Sons, New York, 1962 )Google Scholar
  2. A. G. Gaydon and I. R. Hurle, The Shock Tube in High Temperature Chemical Physics ( Reinhold Publishing Corporation, New York, 1963 )Google Scholar
  3. E. F. Greene and J. P. Toennies, Chemical Reactions in Shock Waves ( Academic Press, New York, 1964 )Google Scholar
  4. 2.
    I. R. Hurle, Reports on Progress in Physics, Vol. 30, Part 1, Institute of Physics and the Physical Society, London, p. 149 (1967)Google Scholar
  5. 3.
    R. A. Strehlow, Progress in High Temperature Physics and Chemistry, 3, 1 (1969)Google Scholar
  6. 4.
    R. L. Belford and R. A. Strehlow, Ann. Rev. Phys. Chem., 20, 247 (1969)Google Scholar
  7. 5.
    F. S. Dainton, Chain Reactions: An Introduction (Methuen and Co. Ltd., London, 1956 )Google Scholar
  8. 6.
    S. W. Benson, The Foundations of Chemical Kinetics (McGraw-Hill Book Company, Inc., New York, 1960 ) Chapters 3, 13, 14Google Scholar
  9. 7.
    J. H. Sullivan, J. Chem. Phys., 30, 1292 (1959)Google Scholar
  10. 8.
    W. L. Garstang and C. N. Hinshelwood, Proc. Roy. Soc., A130, 640 (1931)Google Scholar
  11. 9.
    C. N. Hinshelwood, The Kinetics of Chemical Change (Oxford University Press, Oxford, 1940 ) Chapter 7Google Scholar
  12. 10.
    N. N. Semenov, Some Problems in Chemical Kinetics and Reactivity (Princeton University Press, Princeton, New Jersey) Volumes 1 (1958) and 2 (1959)Google Scholar
  13. 11.
    V. N. Kondratiev, Comprehensive Chemical Kinetics, Volume 2, The Theory of Kinetics, C. H. Bamford and C. F. H. Tipper (Editors)—(Elsevier Publishing Company, Amsterdam, London and New York, 1969 ) Chapter 2Google Scholar
  14. 12.
    A. L. Myerson and W. S. Watt, J. Chem. Phys., 49, 425 (1968)Google Scholar
  15. 13.
    D. R. White and K. H. Cary, Phys. Fluids, 6, 749 (1963)Google Scholar
  16. 14.
    C. P. Fenimore, Chemistry in Premixed Flames ( Pergamon Press, New York, 1964 )Google Scholar
  17. 15.
    R. M. Fristrom and A. A. Westenberg, Flame Structure ( McGraw-Hill Book Company, New York, 1965 ) Chapter 14Google Scholar
  18. 16.
    J. N. Bradley, Flame and Combustion Phenomena (Methuen and Company, Ltd., London, 1969 ) Chapters 3, 5–6Google Scholar
  19. 17.
    B. Lewis and G. von Elbe, Combustion, Flames and Explosions of Gases (Academic Press, New York, 1961) Chapters 1–4Google Scholar
  20. 18.
    V. N. Kondratiev, Chemical Kinetics of Gas Reactions (Pergamon Press, London, 1964) Chapters 9–10Google Scholar
  21. 19.
    A. A. Kovalskii, Phys. Z. Sow., 4, 723 (1933)Google Scholar
  22. 20.
    L. V. Karmilova, A. B. Nalbandyan, and N. N. Semenov, Zhur. Fiz. Khim., 32, 1193 (1958)Google Scholar
  23. 21.
    O. Oldenberg and F. F. Rieke, J. Chem. Phys., 6, 779 (1938)Google Scholar
  24. 22.
    W. E. Kaskan, Combustion and Flame, 2, 229 (1958)Google Scholar
  25. 23.
    W. E. Kaskan, Combustion and Flame, 2, 286 (1958); ibid., 3, 29, 39 (1959)Google Scholar
  26. 24.
    W. M. Houghton and C. J. Jachimowski, Appl. Opt., 9, 329 (1970)Google Scholar
  27. 25.
    S. H. Bauer, G. L. Schott, and R. E. Duff, J. Chem. Phys., 28, 1089 (1958)Google Scholar
  28. 26.
    G. L. Schott and J. L. Kinsey, J. Chem. Phys., 29, 1177 (1958)Google Scholar
  29. 27.
    G. L. Schott, J. Chem. Phys., 32, 710 (1960)Google Scholar
  30. 28.
    G. L. Schott and P. F. Bird, J. Chem. Phys., 41, 2869 (1964)Google Scholar
  31. 29.
    R. W. Getzinger and G. L. Schott, J. Chem. Phys., 43, 3237 (1965)Google Scholar
  32. 30.
    R. W. Getzinger, Eleventh Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1967 ) p. 117Google Scholar
  33. 31.
    R. W. Getzinger and L. S. Blair, Phys. Fluids, 12, I - 176 (1969)Google Scholar
  34. 32.
    R. W. Getzinger and L. S. Blair, Combustion and Flame, 13, 271 (1969)Google Scholar
  35. 33.
    W. R. Gilkerson and N. Davidson, J. Chem. Phys., 23, 687 (1955)Google Scholar
  36. 34.
    G. B. Kistiakowsky and P. H. Kydd, J. Chem. Phys., 25, 824 (1956)Google Scholar
  37. 35.
    T. Just and H. Gg. Wagner, Z. Physik. Chem. (Frankfurt), 13, 241 (1957)Google Scholar
  38. 36.
    P. F. Bird, M.S. Thesis, University of New Mexico, Albuquerque, 1961Google Scholar
  39. 37.
    P. F. Bird and G. L. Schott, J. Quant. Spectry. Radiative Transfer, 5, 783 (1965)Google Scholar
  40. 38.
    R. F. Stubbeman and W. C. Gardiner, Jr., J. Phys. Chem., 68, 3169 (1964); J. Chem. Phys., 40, 1771 (1964)Google Scholar
  41. 39.
    T. Asaba, W. C. Gardiner, Jr., and R. F. Stubbeman, Tenth Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1965 ) p. 295Google Scholar
  42. 40.
    D. L. Ripley and W. C. Gardiner, Jr., J. Chem. Phys., 44, 2285 (1966)Google Scholar
  43. 41.
    D. L. Ripley, Dissertation, University of Texas, Austin, 1967Google Scholar
  44. 42.
    W. C. Gardiner, Jr., K. Morinaga, D. L. Ripley, and T. Takeyama, J. Chem. Phys., 48, 1665 (1968)Google Scholar
  45. 43.
    W. C. Gardiner, Jr., K. Morinaga, D. L. Ripley, and T. Takeyama, Phys. Fluids, 12, I - 120 (1969)Google Scholar
  46. 44.
    C. B. Wakefield, Dissertation, University of Texas, Austin, 1969Google Scholar
  47. 45.
    B. F. Walker, Dissertation, University of Texas, Austin, 1970Google Scholar
  48. 46.
    H. Miyama and T. Takeyama, J. Chem. Phys., 41, 2287 (1965)Google Scholar
  49. 47.
    T. Just and H. Gg. Wagner, Ber. Bunsenges. Physik. Chem., 64, 501 (1960)Google Scholar
  50. 48.
    J. B. Homer and I. R. Hurle, Proc. Roy. Soc., A314, 585 (1970)Google Scholar
  51. 49.
    W. S. Watt and A. L. Myerson, J. Chem. Phys., 51, 1638 (1969)Google Scholar
  52. 50.
    E. Meyer, H. A. Olschewski, J. Troe, and H. Gg. Wagner, Twelfth Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1969 ) p. 345Google Scholar
  53. 51.
    J. Troe, Ber. Bunsenges. Physik. Chem., 73, 946 (1969)Google Scholar
  54. 52.
    R. A. Alpher and D. R. White, Phys. Fluids, 2, 153 (1959)Google Scholar
  55. 53.
    D. R. White, Phys. Fluids, 4, 40 (1961)Google Scholar
  56. 54.
    D. R. White and G. E. Moore, Tenth Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1965 ) p. 785Google Scholar
  57. 55.
    D. R. White, Eleventh Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1967 ) p. 147Google Scholar
  58. 56.
    W. G. Browne, D. R. White, and G. R. Smookler, Twelfth Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1969 ) p. 557Google Scholar
  59. 57.
    R. A. Strehlow and A. Cohen, Phys. Fluids, 5, 97 (1962)Google Scholar
  60. 58.
    A. Cohen and J. Larson, Report Number 1386, Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland, 1967Google Scholar
  61. 59.
    V. V. Voevodsky and R. I. Soloukhin, Tenth Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1965 ) p. 279Google Scholar
  62. R. I. Soloukhin, Shock Waves and Detonations in Gases ( Mono Book Corp., Baltimore, 1966 ) Chapter 4Google Scholar
  63. 60.
    L. S. Blair and R. W. Getzinger, Combustion and Flame, 14, 5 (1970)Google Scholar
  64. 61.
    C. W. von Rosenberg, N. H. Pratt, and K. N. C. Bray, J. Quant. Spectry. Radiative Transfer, 10, 1155 (1970)Google Scholar
  65. 62.
    D. Gutman and G. L. Schott, J. Chem. Phys., 46, 4576 (1967)Google Scholar
  66. 63.
    D. Gutman, E. A. Hardwidge, F. A. Dougherty, and R. W. Lutz, J. Chem. Phys., 47, 4400 (1967)Google Scholar
  67. 64.
    D. Gutman, R. W. Lutz, N. Jacobs, E. A. Hardwidge, and G. L. Schott, J. Chem. Phys., 48, 5689 (1968)Google Scholar
  68. 65.
    G. L. Schott, Twelfth Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1969 ) p. 569Google Scholar
  69. 66.
    T. A. Brabbs, F. E. Belles, and R. S. Brokaw, Thirteenth Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1971 ) p. 129Google Scholar
  70. 67.
    F. E. Belles and T. A. Brabbs, Thirteenth Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1971 ) p. 165Google Scholar
  71. 68.
    A. G. Gaydon, The Spectroscopy of Flames ( Chapman and Hall Ltd., London, 1957 ) Chapter 5Google Scholar
  72. 69.
    P. J. Padley, Trans. Faraday Soc., 56, 449 (1960)Google Scholar
  73. 70.
    M. Steinberg and W. E. Kaskan, Fifth Symposium (International) on Combustion ( Reinhold Press, New York, 1955 ) p. 664Google Scholar
  74. 71.
    S. Fujimoto, Bull. Chem. Soc. Japan, 36, 1233 (1963)Google Scholar
  75. 72.
    G. B. Skinner and G. H. Ringrose, J. Chem. Phys., 42, 2190 (1965)Google Scholar
  76. 73.
    F. E. Belles and M. R. Lauver, J. Chem. Phys., 40, 415 (1964)Google Scholar
  77. 74.
    R. W. Getzinger, L. S. Blair, and D. B. Olson, Proceedings of the Seventh International Shock Tube Symposium, I. I. Glass (Editor)—(University of Toronto Press, 1970 ) p. 605Google Scholar
  78. 75.
    E. M. Bulewicz, C. G. James, and T. M. Sugden, Proc. Roy. Soc., A235, 89 (1956)Google Scholar
  79. 76.
    I. Prigogine and R. Defay, J. Chem. Phys., 15, 614 (1947)Google Scholar
  80. 77.
    W. E. Kaskan and G. L. Schott, Combustion and Flame, 6, 73 (1962)Google Scholar
  81. 78.
    R. S. Brokaw, Tenth Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1965 ) p. 269Google Scholar
  82. 79.
    C. B. Wakefield, D. L. Ripley, and W. C. Gardiner, Jr., J. Chem. Phys., 50, 325 (1969)Google Scholar
  83. 80.
    C. J. Jachimowski and W. M. Houghton, Combustion and Flame, 15, 125 (1970)Google Scholar
  84. 81.
    D. L. Baulch, D. D. Drysdale, and A. C. Lloyd, High Temperature Reaction Rate Data (Department of Physical Chemistry, University of Leeds, England, 1968 ) No. 2Google Scholar
  85. 82.
    A. A. Westenberg and N. deHaas, J. Chem. Phys., 50, 2512 (1969)Google Scholar
  86. 83.
    N. R. Greiner, J. Chem. Phys., 51, 5049 (1969)Google Scholar
  87. 84.
    A. Nalbandyan, Acta Physicochim. U.R.S.S., 19, 483 (1944)Google Scholar
  88. 85.
    D. R. White and R. C. Millikan, J. Chem. Phys., 39, 2107 (1963)Google Scholar
  89. 86.
    F. E. Belles and M. R. Lauver, Tenth Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1965 ) p. 285Google Scholar
  90. 87.
    D. B. Olson, M.A. Thesis, University of Texas, Austin, 1969Google Scholar
  91. 88.
    T. Just and F. Schmalz, AGARD Conference Proceedings No. 34, Part 2, Paper 19, September, 1968Google Scholar
  92. 89.
    F. Schmalz, DLR FB 71–08, Deutsche Forshungs-und Versuchsanstalt für Luft-und Raumfahrt, Institut für Luftstrahlantriebe, Porz-Wahn, 1971Google Scholar
  93. 90.
    G. Rudinger, Phys. Fluids, 4, 1463 (1961)Google Scholar
  94. 91.
    W. C. Gardiner, Jr. and C. B. Wakefield, Astronautica Acta, 15, 399 (1970)Google Scholar
  95. 92.
    C. W. Hamilton and G. L. Schott, Eleventh Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1967 ) p. 635Google Scholar
  96. 93.
    T. A. Jacobs, R. R. Giedt, and N. Cohen, J. Chem. Phys., 47, 54 (1967)Google Scholar
  97. 94.
    H. A. Olschewski, J. Troe, and H. Gg. Wagner, Eleventh Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1967 ) p. 155Google Scholar
  98. 95.
    G. Dixon-Lewis, Proc. Roy. Soc., A317, 235 (1970)Google Scholar
  99. 96.
    K. H. Eberius, K. Hoyermann, and H. Gg. Wagner, Thirteenth Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1971 ) p. 713Google Scholar
  100. 97.
    G. Dixon-Lewis and A Williams, Nature, 196, 1309 (1962)Google Scholar
  101. 98.
    C P Fenimore and G. W. Jones, Tenth Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1965 ) p. 489Google Scholar
  102. 99.
    M. J. McEwan and L. F. Phillips, Combustion and Flame, 11, 63 (1967)Google Scholar
  103. 100.
    G. Dixon-Lewis, M. M. Sutton, and A. Williams, Tenth Symposium (International) on Combustion ( The Combustion Institute, Pittsburgh, 1965 ) p. 495Google Scholar
  104. 101.
    J. L. J. Rosenfeld and T. M. Sugden, Combustion and Flame, 8, 44 (1964)Google Scholar
  105. 102.
    C. J. Halstead and D. R. Jenkins, Combustion and Flame, 14, 321 (1970)Google Scholar
  106. 103.
    R. R. Baldwin, Trans. Faraday Soc., 52, 1344 (1956)Google Scholar
  107. 104.
    S. C. Kurzius and M. Boudart, Combustion and Flame, 12, 477 (1968)Google Scholar
  108. 105.
    R. R. Baldwin, Ninth Symposium (International) on Combustion ( Academic Press, New York and London, 1963 ) p. 218Google Scholar
  109. 106.
    R. R. Baldwin and C. T. Brooks, Trans. Faraday Soc., 58, 1782 (1962)Google Scholar

Copyright information

© Plenum Publishing Company Ltd. 1973

Authors and Affiliations

  • G. L. Schott
    • 1
  • R. W. Getzinger
    • 1
  1. 1.Los Alamos Scientific LaboratoryUniversity of CaliforniaLos AlamosUSA

Personalised recommendations