Fast Beam Measurement of Hydrogen Fine Structure

  • S. R. Lundeen

Abstract

Hydrogenic atoms play a special role in physics and metrology since they are the only atomic systems whose properties can presently be calculated with confidence and high precision. This dual role is well illustrated by the history of fine structure measurements in the hydrogen atom. Figure 1 shows the fine structure of the n=2 state of hydrogen as deduced from the pioneering measurements of Lamb and co-workers in the ‘50’s.I The two independent intervals shown each have their own special significance. The 22S1/2, and 22P1/2 states are separated by the Lamb shift interval & which is due almost entirely to the radiative corrections of Quantum Electrodynamics. Precision measurements of this interval are one of the best tests of this fundamental theory of physics.2 On the other hand, the fine structure interval ΔE between the 22P1/2 and 22P3/2 states depends only weakly on QED and can therefore be calculated unambiguously in terms of the fine structure constant α. Experimental determinations of ΔE can be used by metrologists to improve the precision with which α and other fundamental constants are known.3

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. S. Dayhoff, S. Triebwasser, and W. E. Lamb, Jr. Phys. Rev. 89, 98 (1953)Google Scholar
  2. 2.
    S. J. Brodsky and S. D. Drell. Ann. Rev. Nuclear Science, 20, 147 (1970).ADSCrossRefGoogle Scholar
  3. 3.
    B. N. Taylor, W. H. Parker, and D. N. Langenberg, Rev. Mod. Phys. 41, 375 (1969).ADSCrossRefGoogle Scholar
  4. 4.
    N. F. Ramsey, Molecular Beams, (Oxford Univ. Press, London,) (1956), p. 119.Google Scholar
  5. 5.
    V. W. Hughes in Quantum Electronics, (C. H. Townes, ed. Columbia Univ., New York, 1960), p. 582.Google Scholar
  6. 6.
    C. W. Fabjan and F. M. Pipkin, Phys. Rev. A6, 556 (1972).ADSGoogle Scholar
  7. 7.
    S. R. Lundeen and F. M. Pipkin, Phys. Rev. Lett. 34, 1362 (1975)ADSGoogle Scholar
  8. 8.
    S. R. Lundeen, thesis, Harvard University (unpublished).Google Scholar
  9. 9.
    R. T. Robiscoe and T. W. Shyn, Phys. Rev. Lett. 24, 559 (1970)ADSCrossRefGoogle Scholar
  10. 10.
    T. W. Shyn, W. L. Williams, R. T. Robiscoe, T. Rebane, Phys. Rev. Lett. 22, 1273 (1969).ADSCrossRefGoogle Scholar
  11. 11.
    T. V. Vorbunger and B. L. Cosens, Phys. Rev. Lett. 23, 1273 (1969).ADSCrossRefGoogle Scholar
  12. 12.
    P. J. Mohr, Lawrence Berkeley Laboratory, Preprint A 3641.Google Scholar
  13. 13.
    G. W. Erickson, Phys. Rev. Lett. 27, 780 (1971).ADSCrossRefGoogle Scholar
  14. 14.
    E. R. Cohen, B. N. Taylor, J. Phys. Chem. Ref. Data 2, 741 (1973).Google Scholar
  15. 15.
    P. B. Kramer, S. R. Lundeen, B. O. Clark and F. M. Pipkin, Phys. Rev. Lett. 32, 635 (1974).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • S. R. Lundeen
    • 1
  1. 1.Lyman Laboratory of PhysicsHarvard UniversityCambridgeUSA

Personalised recommendations