A Progress Report on the g-2 Resonance Experiments

  • Hans G. Dehmelt


The spin resonance experiments on slow free electrons in vacuum have a long history. In 1953 Bloch proposed to trap electrons in an electric potential well of depth ~l0−5 V and unspecified shape superimposed upon a magnetic field of ~1000 G. Cyclically the latter could be made so inhomogeneous that the effective magnetic hill seen by all electrons not in the lowest, unmagnetic Rabi-Landau level would overcompensate the electric well. Thereby, only those in the lowest level would be retained. Spin- or cyclotron-transitions to the next higher levels induced subsequently would be signaled by loss of the electrons. The levels referred to are given by E = (2n + 1 + gsm)μoH, with n = 0, 1, 2,.... and m = ±1/2, (Rabi, 1928). Also at Stanford in connection with their cyclotron-resonance work in which trapping was carefully avoided Franken & Liebes showed in 1956 that a small external electric field should shift the cyclotron frequency ωc ≡ 2πνc by δωc ∝ φzzc. This suggested that the Penning (1937) trap in the form described by Pierce (1949) should be well suited for the simultaneous measurement of ωc and of the spin resonance frequency ωs ≡ 2πνs on stored electrons. For such a trap the axial field gradient φzz and δωc are constant throughout its volume and δωc = −ωm may be determined by measuring the axial oscillation frequency ωz ≡ 2πνz or the magnetron (drift) frequency ωm ≡ 2πνm on the electrons in situ.


Electron Cloud Resonance Experiment Guard Ring Cyclotron Motion Series Resonant Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BLOCH, F. (1953). Physica 19, 821.ADSCrossRefGoogle Scholar
  2. BYRNE, J. (1963). Can. J. Phys. 41, 1571.ADSCrossRefGoogle Scholar
  3. CHURCH, D. A. & MOKRI, B. (1971). Z. Physik 244, 6.ADSCrossRefGoogle Scholar
  4. DEHMELT, H. (1961). Progress Report NSF-G5955, May 1961, “Spin Resonance of Free Electrons”.Google Scholar
  5. DEHMELT, H. (1962), Bull. A.P.S. 7, 470.Google Scholar
  6. DEHMELT, H. (1967 & 1969 ). Adv. Atom. & Mol. Physics, 3 & 5, (Academic Press).Google Scholar
  7. DEHMELT, H. & MAJOR, F. G. (1962). Phys. Rev. Letters 8, 213.ADSCrossRefGoogle Scholar
  8. DEHMELT, H. & WALLS, F. (1968). Phys. Rev. Letters 21, 127.ADSCrossRefGoogle Scholar
  9. DEHMELT, H. & EKSTROM, P. (1973a,b). Bull. A.P.S. 18, 408 & 786.Google Scholar
  10. DEHMELT, H. & WINELAND, D. (1973). Bull. A.P.S. 18, 786.Google Scholar
  11. DEHMELT, H. & EKSTROM, P., WINELAND, D. & VAN DYCK, R. (1974). Bull. A.P.S. 19, 643.Google Scholar
  12. FAIRBANK, W. H., WITTEBORN, F. C., MADEY, T. M. F. & LOCKHART, M. G. (1973). Exp. Gravit. 56, 310. (Academic Press).Google Scholar
  13. FARAGO, P. S. (1965). Adv. Electronics & Electron Phys. 21, 1.CrossRefGoogle Scholar
  14. FISCHER, E. (1959). Z. Physik 156, 1.ADSCrossRefGoogle Scholar
  15. FORTSON, E. N., MAJOR, F. G., & DEHMELT, H. G. (1966). Phys. Rev. Letters 16, 221.ADSCrossRefGoogle Scholar
  16. FORTSON, N. E., GRAEFF, G., MAJOR, F. G., ROEDER, R. W. H., & WERTH, G. (1968). ICAP Abstracts of Contributed Papers, p. 9.Google Scholar
  17. FRANKEN, P. A., & LIEBES, S. JR. (1956). Phys. Rev. 104, 1197.ADSCrossRefGoogle Scholar
  18. GARDNER, J. H. (1951). Phys. Rev. 83, 996.ADSCrossRefGoogle Scholar
  19. GRAFF, G., KLEMPT, E. & WERTH, G. (1969). Z. Physik 222, 201.ADSCrossRefGoogle Scholar
  20. GRAFF, G. HUBER, K., KALINOWSKY, H. & WOLF, H., (1972). Phys. Lett. A41, 277.Google Scholar
  21. GRAFF, G., HUBER, K., & KALINOWSKY, H. (1975). Winter Meet. DPG. HUGHES, V. W. ( 1959 ). Rec. Research Mol. Beams (Academic Press).Google Scholar
  22. KIENOW, E. KLEMPT, E., LANGE, F., & NEUBECKER, K. (1974). Phys. Lett. A46, 441.Google Scholar
  23. KLEPPNER, D., GOLDENBERG, H. M., RAMSEY, N. F. (1962). Phys. Rev. 126, 603.ADSCrossRefGoogle Scholar
  24. KNIGHT, L. V. (1965). Ph.D. Thesis, Stanford Univ..Google Scholar
  25. LAND, S. E., & RAITH, W. (1974). Phys. Rev. A9, 1592.Google Scholar
  26. PENNING, F. M. (1937). Physica 4, 71.ADSCrossRefGoogle Scholar
  27. PIERCE, T. R. (1949). “Theory & Design of Electron Beams,”Google Scholar
  28. Chap. 4, Van Nostrand, Princeton, New Jersey.Google Scholar
  29. RABI, I. I. (1928). Z. Physik 49, 507.ADSMATHCrossRefGoogle Scholar
  30. RICH, A., & WESLEY, T. C. (1972). Rev. Mod. Phys. 44, 250.ADSCrossRefGoogle Scholar
  31. VAN DYCK, R. S., EKSTROM, P. A. & DEHMELT, H. G. (1975). Bull. A.P.S. 20, 492.Google Scholar
  32. WALLS, F. (1970). Thesis, Univ. of Washington.Google Scholar
  33. WALLS, F. & STEIN, T. (1973). Phys. Rev. Lett. 31, 975.ADSCrossRefGoogle Scholar
  34. WINELAND, D., EKSTROM, P., & DEHMELT, H. (1973). Phys. Rev. Lett. 31, 1279.ADSCrossRefGoogle Scholar
  35. WINELAND, D., & DEHMELT, H. (1975a). Int. Journ. Mass Spectroscopy & Ion Phys. 16, 338.CrossRefGoogle Scholar
  36. WINELAND, D., & DEHMELT, H. (1975b). Journal Appl. Phys. 46, 919.ADSCrossRefGoogle Scholar
  37. WINELAND, D., VAN DYCK, R. & DEHMELT, H. (1975). Bull. A.P.S. 20.Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Hans G. Dehmelt
    • 1
  1. 1.University of WashingtonSeattleUSA

Personalised recommendations