Advertisement

Reproducibility of Methane- and Iodine-Stabilized Optical Frequency Standards

  • A. Brillet
  • P. Cerez
  • S. Hajdukovic
  • F. Hartmann

Abstract

Helium-neon lasers stabilized to the saturated of CH4 (3.39 um) or I2 (0.633um)exhibit a very high bility, reaching 5 parts in 1014 for the former and for the latter over observation times of a few tens Their reproducibility, on the other hand, is presently only about one part in 1011. Although this value is quite adequate for the contemplated use of these devices as length standards, it is far poorer than the reproducibility of the cesium beam primary frequency standard (10−13). Several laboratories have thus been led to undertake a systematic study of all possible limitations and associated physical problems. The present paper reports our recent results in this direction.

Keywords

Methyl Bromide Beat Note Hyperfine Component Stark Splitting Optical Frequency Standard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    A. Brillet, P. Cérez and H. Clergeot, IEEE J. Quantum Electron. QE-10, 526 (1974)Google Scholar
  2. (2).
    M. Kroll, Phys. Rev. Lett. 23, 631 (1969)ADSCrossRefGoogle Scholar
  3. (3).
    G.R. Hanes and C.E. Dahlstrom, Appl. Phys. Lett. 14, 362 (1969)ADSCrossRefGoogle Scholar
  4. (4).
    P. Cérez, A. Brillet and F. Hartmann, IEEE Trans. Instr. Meas. IM-23, 526 (1974)Google Scholar
  5. (5).
    G.R. Hanes, K.M.Baird and J. de Remigis, Appl. Opt. 12, 1600 (1973)ADSCrossRefGoogle Scholar
  6. (6).
    N.B. Koshelyayskii, V.M. Tatarenkov and A.N. Titov, ZhETF Pis. Red. 15, 461 (1972) (JETP Lett. 15, 326 (1972))Google Scholar
  7. (7).
    J.L. Hall, Proceedings of the CNRS International Colloquium on Sub-Doppler Spectroscopy, ( Editions du CNRS, Paris, 1974 ) p. 105Google Scholar
  8. (8).
    J.L. Hall and C. Bordé, Phys. Rev. Lett. 30, 1101 (1973)ADSCrossRefGoogle Scholar
  9. (9).
    M. Betreneourt, M. Morillon-Chapey, C. Amiot and G. Guelachvili, J. Mol. Spectrosc.., To be publishedGoogle Scholar
  10. (10).
    J.A. Magyar, Thesis (University of Colorado, 1974) unpublishedGoogle Scholar
  11. (11).
    K. Uehara, K. Sakurai and K. Shimoda, J. Phys. Soc. Japan, 26 1018 (1969)ADSCrossRefGoogle Scholar
  12. (12).
    A.C. Luntz and R.G. Brewer, J. Chem. Phys. 54, 3641 (1971)ADSCrossRefGoogle Scholar
  13. (13).
    C. Bordé, C.V. Kunasz, D.G. Hummer and J.L. Hall, Phys. Rev. To be publishedGoogle Scholar
  14. (14).
    A.P. Kol’chenko, S.G. Rautian and R.I. Sokolovskii, ZhETF 55, 1864 (1968) (JETP 28, 986 (1969))Google Scholar
  15. (15).
    J.L. Hall, K. Uehara and C. Bordé, To be publishedGoogle Scholar
  16. (16).
    C.G. Aminoff and S. Stenholm, Phys. Lett. 48A, 483 (1974)CrossRefGoogle Scholar
  17. (17).
    E.V. Baklanov, Opt. Comm. 13, 54 (1975)ADSCrossRefGoogle Scholar
  18. (18).
    S.N. Bagaev and V.P. Chebotaev, ZhETF Pis. Red. 16, 614 (1972) (JETP Lett. 16, 433 (1972))Google Scholar
  19. (19).
    T.J. Ryan, D.G. Youmans, L.A. Hackel and S. Ezekiel, Appl. Phys. Lett. 21, 320 (1972)ADSCrossRefGoogle Scholar
  20. (20).
    K.C. Harvey, R.T. Hawkins, G. Meisel and A.L. Schawlow, Phys. Rev. Lett. 34, 1073 (1975)ADSCrossRefGoogle Scholar
  21. (21).
    B. Cagnac, G. Grynberg and F. Biraben, J. Phys. 34, 845 (1973)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • A. Brillet
    • 1
  • P. Cerez
    • 1
  • S. Hajdukovic
    • 1
  • F. Hartmann
    • 1
  1. 1.Laboratoire de l’Horloge AtomiqueOrsayFrance

Personalised recommendations