Stabilized Lasers and the Speed of Light

  • J. L. Hall


The speed of light, being perhaps Nature’s most universal physical constant, has attracted to its precise measurement the best imaginations and efforts of physicists from many generations. The contemporary set of new techniques -- introduced in pursuit of the “ultimate” speed of light measurement -- includes lasers frequency-stabilized to molecular absorbers and point-contact rectifiers for optical frequencies, to name only two. In this report we briefly summarize these and related developments and will try to project the motivational framework in which these inventions were conceived, developed and refined.


Laser Line Optical Frequency Standard Motivational Framework Molecular Absorber Primary Frequency Standard 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.D. Froome, Proc. Roy. Soc. Lond. A 247, 109 (1958).ADSCrossRefGoogle Scholar
  2. 2.
    Confirming experiments as well as earlier results are discussed in K.D. Froome and L. Essen, The Velocity of Light and Radio Waves ( Academic, New York, 1969 ).Google Scholar
  3. 3.
    J.L. Hall, R.L. Barger, P.L. Bender, H.S. Boyne, J. E. Faller, and J. Ward, report to 1968 URSI Laser Measurement Conference (Warsaw), in Electron Technology (Warsaw) 2, 53 (1969).Google Scholar
  4. 4.
    V.P. Chebotayev, Radiotech. i Electron. 11, 1712 (1966).Google Scholar
  5. 5.
    J.L. Hall and W.W. Morey, Appl. Phys. Lett. 10, 152 (1967).ADSCrossRefGoogle Scholar
  6. 6.
    J.L. Hall, IEEE J. Quant. Electron. QE4, 638 (1968).ADSCrossRefGoogle Scholar
  7. 7.
    P.H. Lee and M.L. Skolnick, Appl. Phys. Lett. 10, 303 (1967)ADSCrossRefGoogle Scholar
  8. V.N. Lisitsyn and V.P. Chebotayev, JETP 27, 227 (1968).ADSGoogle Scholar
  9. 8.
    R.L. Barger and J.L. Hall, Phys. Rev. Lett. 22, 4 (1969).ADSCrossRefGoogle Scholar
  10. 9.
    G.R. Hanes and C.E. Dahlstrom, Appl. Phys. Lett. 14, 362 (1969).ADSCrossRefGoogle Scholar
  11. 10.
    S.N. Bagaev, Yu.D. Kolomnikov, V.N. Lisitsyn, and V.P. Chebotayev, IEEE J. Quant. Electron. QE4, 868 (1968).ADSCrossRefGoogle Scholar
  12. 11.
    CH4: J.L. Hall, in Fundamental and Applied Laser Physics, proceedings of Esfahan Symposium, August 1971, M.S. Feld, A. Javan, and N. Kurnitt, Eds. (Wiley, New York, 1973), p. 466ffGoogle Scholar
  13. S.N. Bagaev, E.V. Baklanov, and V.P. Chebotayev, JETP Lett. 16, 243 (1972)ADSGoogle Scholar
  14. M. Ohi, Y. Akimoto and T. Tako, “Methane-stabilized He-Ne lasers with the method of saturated absorption,” CCDM (1973) Appendix M-10.Google Scholar
  15. 12.
    I2: G.R. Hanes, K.M. Baird, and J. DeRemigis, Appl. Opt. 12, 1600 (1973)Google Scholar
  16. W.G. Schweitzer, E.G. Kessler, Jr., R.D. Deslattes, H.P. Layer, and J.R. Whetstone, Appl. Opt. 12, 2927 (1973)ADSCrossRefGoogle Scholar
  17. J. Helmcke and F. Bayer-Helms, Metrologia 10, 69 (1974)ADSCrossRefGoogle Scholar
  18. W.R.C. Rowley and A.J. Wallard, “Performance studies of He-Ne lasers stabilized by 127I2 saturated absorption,” CCDM (1973) Appendix M5Google Scholar
  19. K. Tanaka, T. Sakurai and T. Kurosawa, “Study of stabilization of He-Ne lasers using saturated absorption in Iodine 127I2,” CCDM (1973) Appendix M-11.Google Scholar
  20. 13.
    A. Brillet, P. Cerez, and H. Clergeot, IEEE J. Quant. Electron. QE-10, 526 (1974).ADSCrossRefGoogle Scholar
  21. 14.
    J. Terrien, Metrologia 10, 9 (1974).ADSCrossRefGoogle Scholar
  22. 15.
    J. Terrien, Nouv. Revue Opt. 4, 215 (1973).ADSCrossRefGoogle Scholar
  23. 16.
    L.O. Hocker, A. Javan, D. Ramachandra Rao, L. Frenkel, and T. Sullivan, Appl. Phys. Lett. 10, 5 (1967).CrossRefGoogle Scholar
  24. 17.
    L.O. Hocker, J.G. Small, and A. Javan, Phys. Lett. 29A, 321 (1969).CrossRefGoogle Scholar
  25. 18.
    K.M. Evenson, J.S. Wells, L.M. Matarrese, and L.B. Elwell, Appl. Phys. Lett. 16, 159 (1970)ADSCrossRefGoogle Scholar
  26. T.G. Blaney, C.C. Bradley, G.J. Edwards, and D.J.E. Knight, Phys. Lett. 43A, 471 (1973).CrossRefGoogle Scholar
  27. 19.
    K.M. Evenson, J.S. Wells, and L.M. Matarrese, Appl. Phys. Lett. 16, 251 (1970).ADSCrossRefGoogle Scholar
  28. 20.
    K.M. Evenson, J.S. Wells, F.R. Petersen, B.L. Danielson, and G.W. Day, Appl. Phys. Lett. 22, 192 (1973).ADSCrossRefGoogle Scholar
  29. 21.
    D.G. McDonald, A.S. Risley, J.D. Cupp, K.M. Evenson, and J.R. Ashley, Appl. Phys. Lett. 20, 296 (1972).ADSCrossRefGoogle Scholar
  30. 22.
    F.R. Petersen, D.G. McDonald, J.D. Cupp, and B.L. Danielson, Phys. Rev. Lett. 31, 573 (1973); and in Laser Spectroscopy, R.G. Brewer and A. Mooradian, eds. ( Plenum, New York, 1974 ), p. 555.Google Scholar
  31. 23.
    A.H.M. Ross, R.S. Eng, H. Kildal, Opt. Commun. 12, 433 (1974).ADSCrossRefGoogle Scholar
  32. 24.
    Beat spectral widths well under 1 kHz were readily obtained, limited mainly by vibrations. D.A. Jennings, private comm.Google Scholar
  33. 25.
    A list of ~100 IR laser lines and references to earlier work may be found in H.E. Radford, IEEE J. Quant. Electron. QE11, 213 (1975).Google Scholar
  34. 26.
    D.A Jennings, F.R. Petersen, and K.M. Evenson, Appl. Phys. Lett. 26, 510 (1975).ADSCrossRefGoogle Scholar
  35. 27.
    K.M. Baird, H.D. Riccius, and K.J. Siemsen, Opt. Commun. 6, 91 (1972).ADSCrossRefGoogle Scholar
  36. 28.
    K.M. Baird, D.S. Smith and W.E. Berger, Opt. Commun. 7, 107 (1973).ADSCrossRefGoogle Scholar
  37. 29.
    B.W. Jolliffe, W.R.C. Rowley, K.C. Shotton, A.J. Wallard, and P.T. Woods, Nature 251, 46 (1974). In Table I a quadrature addition of 4×10-9 has been made to their errors since they did not consider the uncertainty of the meter definition.Google Scholar
  38. 30.
    R.L. Barger and J.L. Hall, Appl. Phys. Lett. 22, 196 (1973).ADSCrossRefGoogle Scholar
  39. 31.
    T.G. Blaney, C.C. Bradley, G.J. Edwards, B.W. Jolliffe, D.J.E. Knight, W.R.C. Rowley, K.C. Shotton and P.T. Woods, Nature 251, 46 (1974). I am indebted to Dr. D.J.E. Knight of NPL for the CH4 result quoted in his preprint “Laser Frequency Measurement and the Speed of Light.”Google Scholar
  40. 32.
    Z. Bay, G.G. Luther, and J.A. White, Phys. Rev. Lett. 29, 189 (1972).ADSCrossRefGoogle Scholar
  41. 33.
    L.A. Hackel, D.G. Youmans, and S. Ezekial, Proc., 27th Symposium on Frequency Control, Fort Monmouth, N.J. (1973).Google Scholar
  42. 34.
    F. Bayer-Helms, private communication.Google Scholar
  43. 35.
    A.E. Siegman, private communication.Google Scholar
  44. 36.
    K. Fuji, T. Takahashi, and Y. Asami, IEEE J. Quant. Electron. QE-11, 111 (1975).ADSCrossRefGoogle Scholar
  45. 37.
    G. Collins, private communication.Google Scholar
  46. 38.
    R.L. Barger, J.B. West and T.C. English, Appl. Phys. Lett., to appear July 1 (1975).Google Scholar
  47. 39.
    R.L. Byer, R.L. Herbst, and M. Kildal, Appl. Phys. Lett. 20, 463 (1972).ADSCrossRefGoogle Scholar
  48. 40.
    J.L. Hall, K. Uehara and Ch. Bordé, Bull. Am. Phys. Soc. Series II, 19, 448 (1974), and to be published.Google Scholar
  49. 41.
    A.P. Kol’chenko. S.G. Rautian, and R.I. Sokolovskii, JETP 28, 986 (1969).ADSGoogle Scholar
  50. 42.
    Ch. Bordé and J.L. Hall in Laser Spectroscopy, R.G. Brewer and A. Mooradian, eds. (Plenum, New York, 1974), p. 125ff.Google Scholar
  51. 43.
    The upper level decay rate includes spontaneous emission as well as transit broadening. It is satisfying that the height ratio/pressure broadening data even lead to a reasonable differential, 20 Hz HWHM basis. Also we deduce that the lower level pressure broadens about 5% faster than the upper level, perhaps due to the ~10-fold wider splittings of the upper level as induced by the Coriolis coupling.Google Scholar
  52. 44.
    J.L. Hall, in Lectures in Theoretical Physics, 1969, ed. by W.E. Brittin and K.T. Mahathappa (Gordon & Breach, New York, 1974), and Sixth International Conference in Electronic and Atomic Collisions: Abstracts of Papers (MIT Press, Cambridge, Mass., 1969), pp. 994–6. This effect has brought the pressure-broadening rate down to 4.2 Hz/μTorr in these high resolution experiments (HWHM basis).Google Scholar
  53. 45.
    S.N. Bagaev, E.V. Baklanov, and V.P. Chebotayev, JETP Lett. 16, 243 (1972).ADSGoogle Scholar
  54. 46.
    Ch. Bordé, D.G. Hummer, C.V. Kunasz, and J.L. Hall “Saturated Absorption Line Shape I: Calculation of the Transit Time Broadening by a Perturbation Approach,” in preparation.Google Scholar
  55. 47.
    J.L. Hall, Ch. Bordé, and C.V. Kunasz, Bull. Am. Phys. Soc. Series I I 19, 448 (1974).Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • J. L. Hall
    • 1
  1. 1.Joint Institute for Laboratory AstrophysicsBoulderUSA

Personalised recommendations