Self-Consistent Calculations of Nuclear Total Binding Energies

  • M. Beiner
  • H. Flocard
  • Nguyen Van Giai
  • Ph. Quentin


The aim of this paper is to show that it is possible to obtain nuclear binding energies with a sufficient accuracy within the framework of the Hartree-Fock (H.F.) approximation. The calculations reported here have been done with the effective Skyrme interaction in the simplified form proposed by Vautherin and Brink [1]. This phenomenological, density-dependent interaction contains six parameters which have been determined by requiring to fit as well as one could the binding energies and radii of magic nuclei. This procedure gives a whole family of acceptable parameter sets which can be classified according to their density dependence. This density dependence will be labelled by the value of the parameter t3 of the force, larger values of t3 corresponding to forces which have a stronger density dependence.


Density Dependence Superheavy Nucleus Superheavy Element Shell Effect Magic Nucleus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. Vautherin and D.M. Brink, Phys.Rev. C5 (1972) 626ADSGoogle Scholar
  2. [2]
    M. Beiner, H. Flocard, Nguyen Van Giai and Ph. Quentin, Nucl. Phys. A238 (1975) 29Google Scholar
  3. [3]
    H. Flocard, Ph. Quentin, A.K. Kerman and D. Vautherin Nucl. Phys. A203 (1973) 433CrossRefGoogle Scholar
  4. [4]
    M. Caillau, J. Letessier, H. Flocard and Ph. Quentin, Phys. Lett. 46B (1973) 304Google Scholar
  5. [5]
    X. Campi et al., Contribution to this ConferenceGoogle Scholar
  6. [6]
    H. Flocard, Ph. Quentin, D. Vautherin, M. Vénéroni and A.K. Kerman, Nucl. Phys. A231 (1974) 176Google Scholar
  7. [7]
    H. Flocard, Phys. Lett. 49B (1974) 129Google Scholar
  8. [8]
    A.H. Wapstra and N.B. Gove, Nuclear Data, Table 9 (1971) 265Google Scholar
  9. [9]
    M. Bolsterli, E.O. Fiset, J.R. Nix and J.L. Norton, Phys. Rev. C5 (1972) 1050Google Scholar
  10. [10]
    S.G. Nilsson, C.F. Tsang, A. Sobiczewski, Z. Szymanski, S. Wycech, C. Guftafsson, I.L. Lamm, P. Möller and B. Nilsson, Nucl. Phys. A131 (1969) 1CrossRefGoogle Scholar
  11. [11]
    M. Brack, J. Daamgard, A.S. Jensen, H.C. Pauli, V.M. Strutinsky and C.Y. Wong, Rev.Mod.Phys.44 (1972) 320Google Scholar
  12. [12]
    V.E. Viola and G.T. Seaborg, J. Inorg. Nucl. Chem. 28 (1966) 741Google Scholar
  13. [13]
    E.O. Fiset and J.R. Nix, Nucl. Phys. A193 (1972) 647CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • M. Beiner
    • 1
  • H. Flocard
    • 1
  • Nguyen Van Giai
    • 1
  • Ph. Quentin
    • 1
  1. 1.Division de Physique ThéoriqueInstitut de Physique NucléaireOrsayFrance

Personalised recommendations