Advertisement

Attempts to Obtain Highly Resolved Mass Spectra of Short-Lived Fission Products with the Lohengrin Separator

  • H. Wollnik
  • G. Siegert
  • J. Greif
  • G. Fiedler
  • M. Asghar
  • J. P. Bailleul
  • J. P. Bocquet
  • M. Chauvin
  • R. Decker
  • B. Pfeiffer
  • H. Schrader

Abstract

The LOHENGRIN is a large Kaufmann Thomson parabola spectrograph the two fields of which are not superimposed but separated and shaped as sector fields [see fig.1] so that the system focuses stigmatically1). Its field boundaries are curved so that the image aberrations are minimized2). Since it is designed to deflect recoil fission products of about 100 MeV energy which have been stripped of about 20 electrons the dimensions of the system are chosen to be large. With 0.2 T the magnet deflects the fission products on a radius of 4m, while the electrostatic condensor uses ±300KV on its electrodes separated by 30 cm to deflect the fission products on a radius of 5.6 m3). Using a thin layer of 400 µg/cm2 of 235U placed close to the reactor core of th high flux reactor in Grenoble in a neutron flux of about 5.1014 thermal neutrons per cm2 and second, sufficient fission products enter LOHENGRIN, so that at its exit slit over 104 particles of one mass can be recorded per second. The separator has a mass dispersion of 32 mm/ % perpendicular to the exit slit and an energy dispersion of 70 mm/ % parallel to the exit slit. It is designed so that particles whose energies deviate by ±5% from the mean energy pass through the 700 mm long exit slit.
Abb. 1

Principle sketch of the LOHENGRIN fission products separator in Grenoble. The overall path legth of the separator is 23 m.

Keywords

Fission Product Exit Slit Sector Field Image Carrier High Flux Reactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    S. Neumann and H. Ewald, Z.f.Phys. 169 (1962) 224ADSCrossRefGoogle Scholar
  2. 2).
    G. Fiebig, H. Lawin, H. Wollnik, Int.Rep. KFA Jülich (1971)Google Scholar
  3. 3).
    E. Moll, H. Ewald, H. Wollnik, P. Armbruster, G. Fiebig, H. Lawin, Proc.Int.Conf.Elect.magn.Isotope Sep. Marburg/Germany, Rep. BMBW-FB K70 (1970) 225Google Scholar
  4. 4).
    G. Siegert, H. Wollnik, J. Greif, G. Fiedler, M. Asghar, G. Bailleul, J.P. Bocquet, J.P. Gautheron, H. Schrader, H. Ewald, P. Armbruster, Phys.Lett. 53B (1974), 45ADSGoogle Scholar
  5. 5).
    H. Schrader, R. Stippler, F. Munnich, R. Decker, H. Wollnik, E.M. Monnand, M. Asghar, J.P. Bocquet, G. Siegert, Spring.Conf.on Nucl.Physics, Den Haag, (1975)Google Scholar
  6. 6).
    J. Aschenbach, G. Fiedler, H. Schreck-Kölner, G. Siegert, Nucl.Instr. & Meth., 116, (1974), 389ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • H. Wollnik
    • 2
  • G. Siegert
    • 1
  • J. Greif
    • 2
  • G. Fiedler
    • 2
  • M. Asghar
    • 1
  • J. P. Bailleul
    • 1
  • J. P. Bocquet
    • 3
  • M. Chauvin
    • 1
  • R. Decker
    • 2
  • B. Pfeiffer
    • 2
  • H. Schrader
    • 1
  1. 1.Institut Laue-LangevinGrenobleFrance
  2. 2.II.Physikalisches InstitutUniversität GiessenGermany
  3. 3.DFR, CENGrenobleFrance

Personalised recommendations