Advertisement

Plasma Albumin

Aspects of its Chemical Behaviour and Structure
  • Geoffrey Franglen

Abstract

Plasma albumin is easy to prepare in bulk in a highly purified and apparently native state. Because of this, it has been used extensively during the past fifty years as a model protein in a wide variety of studies directed towards an understanding either of the properties of albumin as such or, more often, of the physico-chemical behaviour of soluble proteins in general. In these experiments the purity and nativeness of the albumin samples have usually been established by such means as the demonstration of a single, symmetrical peak on electrophoretic analysis, by the absence of other proteins on immuno-analysis, or by solubility and viscosity estimations. It has been realised only comparatively recently that preparation and storage of plasma albumin is practically always accompanied by significant formation of polymeric forms; it is difficult to maintain albumin samples in a completely monomeric state, even after considerable care in preparation. This must be taken into account when assessing work, especially early work, on albumin.

Keywords

Polypeptide Chain Polymeric Form Human Albumin Plasma Albumin Bovine Albumin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. W. Low, J. Am. chem. Soc., 74, 4830 (1952).Google Scholar
  2. 2.
    B. W. Low and F. M. Richards, J. Am. chem. Soc., 74, 1660 (1952).Google Scholar
  3. 3.
    M. J. Hunter and F. C. McDuffie, J. Am. chem. Soc., 81, 1400 (1959).Google Scholar
  4. 4.
    A. Polson, Biochim. biophys. Acta, 140, 197 (1967).PubMedGoogle Scholar
  5. 5.
    G. Scatchard, A. C. Batchelder and A. Brown, J. clin. Invest., 23, 458 (1944).PubMedGoogle Scholar
  6. 6.
    J. L. Oncley, G. Scatchard and A. Brown, J. phys. colloid Chem., 51, 184 (1947).PubMedGoogle Scholar
  7. 7.
    P. A. Charlwood, Biochem. J., 51, 113 (1952).PubMedGoogle Scholar
  8. 8.
    J. M. Creeth, Biochem. J., 51, 10 (1952).PubMedGoogle Scholar
  9. 9.
    G. I. Loeb and H. A. Scheraga, J. phys. Chem., 60, 1633 (1956).Google Scholar
  10. 10.
    M. Champagne, J. Chim. phys., 54, 379 (1957).Google Scholar
  11. 11.
    S. E. Allerton, D. Elwyn, J. T. Edsall and P. F. Spahr, J. biol. Chem., 237, 85 (1962).PubMedGoogle Scholar
  12. 12.
    P. G. Squire, P. Moser and C. T. O’Konski, Biochemistry, N.Y., 12, 4261 (1968).Google Scholar
  13. 13.
    H. E. Schultze and J. F. Heremans, Molecular Biology of Human Proteins with Special Reference to Plasma Proteins, vol. 1. (Elsevier Publishing Co., Amsterdam 1966).Google Scholar
  14. 14.
    R. A. Phelps and F. W. Putnam, (ed. F. W. Putnam) The Plasma Proteins, vol. 1, p. 143. (Academic Press Inc., New York 1960).Google Scholar
  15. 15.
    H. Hoch and C. J. O. R. Morris, Nature, Lond., 156, 234 (1945).Google Scholar
  16. 16.
    K. O. Pedersen, Archs Biochem. Biophys., Suppl. 1, 157 (1962).Google Scholar
  17. 17.
    A. Saifer, M. Robin and M. Ventrice, Archs Biochem. Biophys., 92, 409 (1961).Google Scholar
  18. 18.
    L.-O. Andersson, Biochim. biophys. Acta, 117, 115 (1966).PubMedGoogle Scholar
  19. 19.
    R. A. Kekwick and M. E. Mackay, The Separation of Protein Fractions from Human Plasma with Ether. M.R.C. Spec. Rep. Ser. No. 286. H.M. Stationery Office, London (1954).Google Scholar
  20. 20.
    J. Vallance-Owen, E. Dennes and P. N. Campbell, Lancet, 2, 336 (1958).PubMedGoogle Scholar
  21. 21.
    S. E. Michael, Biochem. J., 82, 212 (1962).PubMedGoogle Scholar
  22. 22.
    M. Delaage, Biochim. biophys. Acta, 168, 573 (1968).PubMedGoogle Scholar
  23. 23.
    J. F. Foster, (ed. F. Putnam) The Plasma Proteins, vol. 1, p. 179. (Academic Press Inc., New York 1960).Google Scholar
  24. 24.
    A. Saifer and J. Palo, Analyt. Biochem., 27, 1 (1969).PubMedGoogle Scholar
  25. 25.
    P. F. Spahr and J. T. Edsall, J. biol. Chem., 239, 850 (1964).PubMedGoogle Scholar
  26. 26.
    J. F. Foster, Chem. Soc., (Lond), Spec. Publ., 23, 25 (1968).Google Scholar
  27. 27.
    W. L. Hughes, (eds., H. Neurath and K. Bailey) The Proteins, vol. 2, part B, chap. 21. (Academic Press Inc., New York 1954).Google Scholar
  28. 28.
    T. P. King, J. biol. Chem., 236, PC5 (1961).PubMedGoogle Scholar
  29. 29.
    L. Libenson and M. Jena, Archs Biochem. Biophys., 100, 441 (1963).Google Scholar
  30. 30.
    L. Libenson and M. Jena, Archs Biochem. Biophys., 104, 292 (1964).Google Scholar
  31. 31.
    G. Franglen, Proc. R. Soc. Med., 60, 1072 (1967).PubMedGoogle Scholar
  32. 32.
    W. L. Hughes, J. Am. chem. Soc., 69, 1836 (1947).PubMedGoogle Scholar
  33. 33.
    W. L. Hughes, Cold Spring Harb. Symp. quant. Biol., 14, 79 (1950).PubMedGoogle Scholar
  34. 34.
    W. L. Hughes and H. M. Dintzis, J. biol. Chem., 239, 845 (1964).PubMedGoogle Scholar
  35. 35.
    C.-B. Laurell and J.-E. Niléhn, J. clin. Invest., 45, 1935 (1966).PubMedGoogle Scholar
  36. 36.
    K. Schmid, A. Polis and S. Takahashi, Biochim. biophys. Acta, 57, 48 (1962).PubMedGoogle Scholar
  37. 37.
    R. Hartley, H. Sober and E. Peterson, Biochemistry, N.Y., 1, 60 (1962).Google Scholar
  38. 38.
    Š. Štokrová and J. Šponar, Colin Czech. chem. Commun. Engl. Edn, 27, 2516 (1962).Google Scholar
  39. 39.
    Š. Štokrová and J. Šponar, Colin Czech. chem. Commun. Engl. Edn, 28, 659 (1963).Google Scholar
  40. 40.
    J. Šponar, I. Frič, Š. Štokrová and J. Kováriková, Colin Czech. Commun. Engl. Edn, 28, 1831 (1963).Google Scholar
  41. 41.
    M. E. Mackay and N. H. Martin, Biochem. J., 65, 284 (1957).PubMedGoogle Scholar
  42. 42.
    R. F. Chen, J. biol. Chem., 242, 173 (1967).PubMedGoogle Scholar
  43. 43.
    L. R. Weitkamp, D. C. Shreffler, J. L. Robbins, O. Drachmann, P. L. Adner, R. J. Wieme, N. M. Simon, K. B. Cooke, G. Sandor, F. Wuhrmann, M. Braend and A. L. Tarnoky, Acta genet., Basel, 17, 399 (1967).PubMedGoogle Scholar
  44. 44.
    L. R. Weitkamp, G. Franglen, D. A. Rokala, H. F. Polesky, N. E. Simpson, F. W. Sunderman, H. E. Bell, J. Saave, R. Lisker and S. W. Bohls, Hum. Hered., 19, 159 (1969).PubMedGoogle Scholar
  45. 45.
    L. R. Weitkamp, E. B. Robson, D. C. Shreffler and G. Corney, Amer. J. hum. Genet., 20, 392 (1968).PubMedGoogle Scholar
  46. 46.
    L. R. Weitkamp, J. H. Renwick, J. Berger, D. C. Shreffler, O. Drachmann, F. Wuhrmann, M. Braend and G. Franglen, Hum. Hered., 20, 1 (1970).PubMedGoogle Scholar
  47. 47.
    D. P. Earle, M. P. Hutt, K. Schmid and D. Gitlin, J. clin. Invest., 38, 1412 (1959).PubMedGoogle Scholar
  48. 48.
    M. Knedel, Blut, 3, 129 (1957).PubMedGoogle Scholar
  49. 49.
    A. L. Tarnoky and A. N. Lestas, Clinica chim. Acta, 9, 551 (1964).Google Scholar
  50. 50.
    M. S. Adams, J. med. Genet., 3, 198 (1966).PubMedGoogle Scholar
  51. 51.
    H. E. Bell, S. F. Nicholson and Z. R. Thompson, Clinica chim. Acta, 15, 247 (1967).Google Scholar
  52. 52.
    A. Tiselius, S. Hjertén and Ö. Levis, Archs Biochem. Biophys., 65, 132 (1956).Google Scholar
  53. 53.
    M. R. Salaman and A. R. Williamson, Biochem. J., 122, 93 (1971).PubMedGoogle Scholar
  54. 54.
    J. Leutscher, J. Am. chem. Soc., 61, 2888 (1939).Google Scholar
  55. 55.
    D. G. Sharp, G. Cooper, J. Erickson and H. Neurath, J. biol. Chem., 144, 139 (1942).Google Scholar
  56. 56.
    R. A. Alberty, J. phys. colloid Chem., 53, 114 (1949).PubMedGoogle Scholar
  57. 57.
    K. Aoki and J. F. Foster, J. Am. chem. Soc., 78, 3538 (1956).Google Scholar
  58. 58.
    K. Aoki and J. F. Foster, J. Am. chem. Soc., 79, 3385 (1957).Google Scholar
  59. 59.
    J. F. Foster, M. Sogami, H. A. Petersen and W. J. Leonard, J. biol. Chem., 240, 2495 (1965).PubMedGoogle Scholar
  60. 60.
    M. Sogami and J. F. Foster, J. biol. Chem., 283, PC2245 (1963).Google Scholar
  61. 61.
    H. A. Petersen and J. F. Foster, J. biol. Chem., 240, 2503 (1965).PubMedGoogle Scholar
  62. 62.
    R. H. McMenamy and Y. Lee, Archs Biochem. Biophys., 122, 635 (1967).Google Scholar
  63. 63.
    D. S. Goodman, J. Am. chem. Soc., 80, 3892 (1958).Google Scholar
  64. 64.
    M. Sogami and J. F. Foster, Fedn Proc. Fedn Am. Socs. exp. Biol., 26, 827 (1967).Google Scholar
  65. 65.
    W. E. Moore and J. F. Foster, Biochemistry, N.Y., 7, 3409 (1968).Google Scholar
  66. 66.
    K. P. Wong and J. F. Foster, Biochemistry, N. Y., 8, 4096 (1969a).Google Scholar
  67. 67.
    K. P. Wong and J. F. Foster, Biochemistry, N. Y., 8, 4104 (1969b).Google Scholar
  68. 68.
    E. J. Williams and J. F. Foster, J. Am. chem. Soc., 81, 865 (1959).Google Scholar
  69. 69.
    L.-O. Andersson, Int. J. Protein Research, 1, 151 (1969).Google Scholar
  70. 69a.
    F. Antoni, S. Bozsóky, T. Dévényi, A. Lendvai and B. Szörényi, Acta physiol. hung., 9, 309 (1956).PubMedGoogle Scholar
  71. F. Antoni, S. Bozsóky, T. Dévényi, A. Lendvai and B. Szörényi, through Chem. Abstr., 50, 17102 (1956).Google Scholar
  72. 69b.
    T. Peters, A. C. Logan and C. A. Stanford, Biochim. biophys. Acta, 30, 88 (1958).PubMedGoogle Scholar
  73. 69c.
    K. Kusami, J. Biochem., Tokyo, 44, 375 (1957).Google Scholar
  74. 70.
    B. Jirgensons and T. Ikenaka, Makromol. Chem., 31, 112 (1959).Google Scholar
  75. 71.
    E. O. P. Thompson, J. biol. Chem., 208, 565 (1954).PubMedGoogle Scholar
  76. 72.
    T. Ikenaka, J. Am. chem. Soc., 82, 3180 (1960).Google Scholar
  77. 73.
    T. Peters and C. Hawn, J. biol. Chem., 242, 1566 (1967).PubMedGoogle Scholar
  78. 74.
    W. T. Shearer, R. A. Bradshaw, F. R. N. Gurd and T. Peters, J. biol. Chem., 242, 5451 (1967).PubMedGoogle Scholar
  79. 75.
    W. F. White, J. Shields and K. C. Robbins, J. Am. chem. Soc., 77, 1267 (1955).Google Scholar
  80. 76.
    T. L. K. Low, The Amino Acid Sequences of Porcine and Bovine Serum Albumins. Ph.D. Dissertation presented to the University of Texas at Austin. (1970).Google Scholar
  81. 77.
    A. Witter and H. Tuppy, Biochem. biophys. Acta, 45, 429 (1960).PubMedGoogle Scholar
  82. 78.
    P. Urness and P. Doty, Adv. Protein Chem., 16, 401 (1961).Google Scholar
  83. 79.
    J. A. Schellman and C. Schellman, (ed. H. Neurath) The Proteins, vol. 2, p. 1. (Academic Press Inc., New York 1964).Google Scholar
  84. 80.
    P. Callaghan and N. H. Martin, Biochem. J., 83, 144 (1962).PubMedGoogle Scholar
  85. 81.
    B. Jirgensons, Makromol. Chem., 91, 74 (1966).Google Scholar
  86. 82.
    C. L. Ruddiford and B. R. Jennings, Biochim. biophys. Acta, 126, 171 (1966).Google Scholar
  87. 83.
    J. L. Oncley, H. M. Dintzis and N. R. S. Hollies, Abstract of papers, 122nd meeting, American Chemical Society, p. 12P. (1952).Google Scholar
  88. 84.
    H. N. Ritland, P. Kaesberg and W. W. Beeman, J. chem. Phys., 18, 1237 (1950).Google Scholar
  89. 85.
    W. W. Beeman, J. W. Anderegg and S. Shulman, Phys. Rev., 87, 186 (1952).Google Scholar
  90. 86.
    D. P. Riley and G. Oster, Disc. Faraday Soc., 11, 107 (1951).Google Scholar
  91. 87.
    G. Weber, Biochem. J., 51, 155 (1952).PubMedGoogle Scholar
  92. 88.
    G. Weber, Disc Faraday Soc., 13, 33 (1953).Google Scholar
  93. 89.
    K. O. Petersen, Disc Faraday Soc., 13, 49 (1963).Google Scholar
  94. 90.
    P. Doty and R. F. Steiner, J. chem. Phys., 20, 85 (1952).Google Scholar
  95. 91.
    J. T. Edsall, H. Edelhoch, R. Lontie and P. R. Morrison, J. Am. chem. Soc., 72, 4641 (1950).Google Scholar
  96. 92.
    H. Gutfreund, Trans. Faraday Soc., 50, 628 (1954).Google Scholar
  97. 93.
    W. F. Harrington, P. Johnson and R. H. Ottewill, Biochem. J., 62, 569 (1956).PubMedGoogle Scholar
  98. 94.
    A. Chatterjee and S. N. Chatterjee, J. mol. Biol., 11, 432 (1965).PubMedGoogle Scholar
  99. 95.
    E. M. Slayter, J. mol. Biol., 14, 443 (1965).PubMedGoogle Scholar
  100. 96.
    B. J. Adkins and J. F. Foster, Biochemistry, N. Y., 4, 634 (1965).Google Scholar
  101. 97.
    B. J. Adkins and J. F. Foster, Biochemistry, N. Y., 5, 2579 (1966).Google Scholar
  102. 98.
    C. Tanford, Proc. Iowa Acad. Sci., 59, 206 (1952).Google Scholar
  103. 99.
    J. T. Yang and J. F. Foster, J. Am. chem. Soc., 76, 1588 (1954).Google Scholar
  104. 100.
    C. Tanford, J. G. Buzzell, D. G. Rands and S. A. Swanson, J. Am. chem, Soc., 77, 6421 (1955).Google Scholar
  105. 101.
    G. Weber and L. B. Young, J. biol Chem., 139, 1415 (1964a).Google Scholar
  106. 102.
    G. Weber and L. B. Young, J. biol. Chem., 239, 1424 (1964b).PubMedGoogle Scholar
  107. 103.
    E. Annau, Nature, Lond., 183, 190 (1959).Google Scholar
  108. 104.
    M. Schlamowitz, L. U. Peterson and F. C. Wissler, Archs Biochem. Biophys., 92, 58 (1961).Google Scholar
  109. 105.
    F. Smet, R. Lontie and G. Preaux, (ed. H. Peeters) Protides of the Biological Fluids, p. 119. (Elsevier Publishing Co., Amsterdam 1963).Google Scholar
  110. 106.
    W. G. M. Braam, B. J. M. Harmsen and G. A. J. Van Os, Biochim. Biophys. Acta, 236, 99 (1971).PubMedGoogle Scholar
  111. 107.
    V. Luzzati, J. Witz and A. Nicholaieff, J. mol. Biol., 3, 379 (1961).PubMedGoogle Scholar
  112. 108.
    V. Bloomfield, Biochemistry, N. Y., 5, 684 (1966).Google Scholar
  113. 109.
    G. Franglen and G. R. E. Swaniker, Biochem. J., 109, 107 (1968).PubMedGoogle Scholar
  114. 110.
    D. M. Pederson and J. F. Foster, Biochemistry, N.Y., 8, 2357 (1969).Google Scholar
  115. 111.
    H. Bennhold, (ed. H. Peeters) Protides of the Biological Fluids, p. 58. (Elsevier Publishing Co., Amsterdam 1961a).Google Scholar
  116. 112.
    H. Bennhold, Bull Schweiz. Akad. med. Wiss., 17, 62 (1961b).PubMedGoogle Scholar
  117. 113.
    F. Karush, J. phys. Chem., 56, 70 (1952).Google Scholar
  118. 114.
    F. Karush, J. Am. chem. Soc., 76, 5536 (1954).Google Scholar
  119. 115.
    G. Markus and F. Karush, J. Am. chem. Soc., 80, 89 (1958).Google Scholar

Copyright information

© Plenum Publishing Company Ltd 1974

Authors and Affiliations

  • Geoffrey Franglen
    • 1
  1. 1.Department of Chemical PathologySt. George’s Hospital Medical SchoolLondonUK

Personalised recommendations