Brain Dysfunction in Congenital Malformations of the Nervous System

  • Anatole S. Dekaban


The overall incidence of various types of major congenital malformations in man is very high. This can be assessed from the fairly detailed statistical data available in a number of surveys(1,2) (cf. also Table 1). A more recent study conducted under the auspices of the World Health Organization and reported by Stevenson et al.(7) showed the total incidence of major congenital malformations in 411,405 births pooled from different surveys to be 12.7/1000 births. The lowest rates were in Bombay (8.6/1000) and Santiago (9.44/1000) and the highest in Belfast (19.4/1000), Panama City (20.8/1000), and Johannesburg (22.5/1000). A variety of environmental factors, such as nutritional deficiencies, toxins, infections, background radiation, and genetic influences, is responsible for most of the differences. However, the manner of collecting and evaluating statistical data must not be overlooked as contributing to the reported differences. The fact remains that congenital malformations of a serious nature are common and account heavily for the high rate of mortality and morbidity in children. In the USA the incidence of total congenital malformations is about 10/1000 live births, which is close to the average found by the World Health Organization study(7) of 12.7/1000 total births, which includes stillbirths.


Corpus Callosum Olfactory Bulb Congenital Malformation Cerebral Hemisphere Spina Bifida 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Spillane, The geography of neurology, Br. Med. J. 3:506–512 (1972).CrossRefGoogle Scholar
  2. 2.
    World Health Organization, Epidemiological and vital statistics report 20:711–000 (1967).Google Scholar
  3. 3.
    M. Alter, Anencephalus, hydrocephalus, Spina bifida: Epidemiology with special reference to survey in Charleston, S.C., Arch. Neurol. 7:411–422 (1962).CrossRefGoogle Scholar
  4. 4.
    T. McKeown and R. G. Record, in “Ciba Foundation Symposium on Congenital Malformations,” Churchill, London (1958).Google Scholar
  5. 5.
    J. V. Neel, A study of major congenital defects in Japanese infants, Am. J. Hum. Genet. 10:398–445 (1958).Google Scholar
  6. 6.
    Y. Shimada and T. Tsuji, Halogenated oxyquinoline derivatives and neurological syndromes, Lancet 2:41–42 (1971).CrossRefGoogle Scholar
  7. 7.
    A. C. Stevenson, H. A. Johnston, M. I. P. Stewart, and D. R. Golding, Congenital malformations — A report of a study of series of consecutive births in 24 centers, W.H.O. 34(Suppl):9–127 (1966).Google Scholar
  8. 8.
    S. S. Stevenson, J. Worcester, and R. G. Rice, Six hundred and seventy-seven congenitally malformed infants and associated gestational characteristics: General considerations, Pediatrics 6:37–50 (1950).Google Scholar
  9. 9.
    P. Stocks, Incidence of congenital malformations in the regions of England and Wales, Br. J. Prev. Soc. Med. 24:67–77 (1970).Google Scholar
  10. 10.
    A. S. Dekaban, T. E. Cone, Jr., H. L. Riva, and J. E. Lieberman, Correlation of fetal wastage and condition of offspring and maternal state during gestation and circumstances of delivery in 4,156 pregnancies. I. Demographic characteristics and summarized results of data. II. Analysis of the main distribution of the outcome of 4,156 pregnancies. Am. J. Obstet. Gynecol. 83:532–543 (I) and 544-550 (II) (1962).Google Scholar
  11. 11.
    E. M. Williamson, Incidence of family aggregation of major congenital malformations of the central nervous system, J. Med. Genet. 2:161–172 (1965).CrossRefGoogle Scholar
  12. 12.
    W. R. Jones, Anencephalus: A 23 year survey in a Sydney hospital. Med. J. Aust. 1:104–106 (1967).Google Scholar
  13. 13.
    A. Czeizel and C. Révész, Major malformations of the central nervous system in Hungary, Br. J. Prev. Soc. Med. 4:205–222 (1970).Google Scholar
  14. 14.
    L. S. Penrose, Genetics of anencephaly, J. Ment. Defic. Res. 1:4–15 (1957).Google Scholar
  15. 15.
    V. P. Coffey and W. J. E. Jessop, A study of 137 cases of anencephaly, Br. J. Prev. Soc. Med. 11:174–180 (1957).Google Scholar
  16. 16.
    P. de Bellefeuille, Contrabution à l’étiologie de l’anencéphalie par l’étude des jimeaux, Union Med. Can. 98:437–443 (1969).Google Scholar
  17. 17.
    J. H. Renwick, Spina bifida, anencephaly and potato blight, Lancet 2:967–968 (1972).CrossRefGoogle Scholar
  18. 18.
    C. O. Carter, Spina bifida and anencephaly: A problem in genetic-environmental interaction, J. Biosoc. Sci. 1:71–83 (1969).Google Scholar
  19. 19.
    M. Monnier and H. Willi, Die integrative Tatigkeit des Nervensystem beim normalen Saugling und beim bulbospinalen Anencephalen (Rautenhirnwesen), Ann. Paediatr. 169:289–296 (1947).Google Scholar
  20. 20.
    A. S. Dekaban, Anencephaly in early human embryos, J. Neuropathol. Exp. Neurol. 22:533–548 (1963).CrossRefGoogle Scholar
  21. 21.
    G. W. Bartelmez and A. S. Dekaban, The early development of the human brain, Contrib. Embryol. (Carnegie Institution of Washington) 37:13–32 (1962).Google Scholar
  22. 22.
    R. G. Fischer, A. Uihein, and H. M. Keith, Spina bifida and cranium bifidum: Study of 530 cases, Proc. Staff Meetings Mayo Clin. 27:33–38 (1952).Google Scholar
  23. 23.
    J. T. Schwiddle, Spina bifida, survey of 225 encephaloceles, meningoceles and myelomeningoceles, Am. J. Dis. Child. 84:35–51 (1952).Google Scholar
  24. 24.
    F. D. Ingraham and D. D. Matson, “Neurosurgery in Infancy and Childhood,” Charles C Thomas, Springfield, Ill. (1954).Google Scholar
  25. 25.
    E. LaTorre and E. Occhipinti, Angiographic findings in some malformations of the brain, Eur. Neurol. 4:210–225 (1970).CrossRefGoogle Scholar
  26. 26.
    E. C. Rice and A. S. Dekaban, Congenital hemiplegia resulting from cerebral malformation: Terminal complication of myeloid leukemia, Arch. Pathol. 68:348–351 (1959).Google Scholar
  27. 27.
    A. S. Dekaban and K. R. Magee, Occurrence of neurological abnormalities in infants of diabetic mothers, Neurology 8:193–200 (1958).CrossRefGoogle Scholar
  28. 28.
    P. I. Yakovlev, Pathoarchitectonic studies of cerebral malformations. III. Arhinencephalies (holotelencephalies), J. Neuropathol. Exp. Neurol. 18:22–55 (1959).CrossRefGoogle Scholar
  29. 29.
    A. S. Dekaban, Arhinencephaly in an infant born to a diabetic mother, J. Neuropathol. Exp. Neurol. 18:620–626 (1959).CrossRefGoogle Scholar
  30. 30.
    B. Ostertag, Missbildungen, in “Handbuch der spezillen pathologischen Anatomie und Histologie,” Vol. 13, Part 4. Springer-Verlag, Berlin (1956).Google Scholar
  31. 31.
    E. C. Alvord, Jr., personal communication.Google Scholar
  32. 32.
    A. S. Dekaban, Arhinencephaly, Am. J. Ment. Dejic. 63:428–432 (1958).Google Scholar
  33. 33.
    R. J. Lemire, J. D. Loesser, R. W. Leech, and E. C. Alvord, Jr., “Normal and Abnormal Development of the Human Nervous System,” Harper & Row, New York (in press).Google Scholar
  34. 34.
    G. Kohne, Beziehungen der angeborenen Olfactoriusdefekts zum primären Eunuchoidismus des Mannes, Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 314:345–357 (1947).CrossRefGoogle Scholar
  35. 35.
    A. S. Dekaban, unpublished.Google Scholar
  36. 36.
    R. M. Norman, Neuropathological findings in trisomies 13-15 and 17-18 with special reference to the cerebellum, Dev. Med. Child. Neurol. 8:170–177 (1966).CrossRefGoogle Scholar
  37. 37.
    K. L. Turplan, A. A. Sandberg, and T. Aceto, Jr., Structural anomalies in the.cerebellum in association with trisomy, J. Am. Med. Assoc. 197:557–568 (1966).CrossRefGoogle Scholar
  38. 38.
    L. J. Butler, G. J. A. I. Sundgrass, N. E. France, L. Sinclair, and A. E. Russell, (16-18) Trisomy syndrome: Analysis of 13 cases, Arch. Dis. Child. 40:600–611 (1965).CrossRefGoogle Scholar
  39. 39.
    J. D. Loesser and E. C. Alvord, Jr., Agenesis of the corpus callosum, Brain 91:553–570 (1968).CrossRefGoogle Scholar
  40. 40.
    P. Nöel, J. P. Hubert, M. Ectors, L. Franklin, and J. Flament-Durand, Agenesis of the corpus callosum associated with relapsing hypothermia, Brain 96:359–368 (1973).CrossRefGoogle Scholar
  41. 41.
    U. T. Slager, A. B. Kelly, and J. A. Wagner, Congenital absence of the corpus callosum, N. Engl. J. Med. 256:1171–1176 (1957).CrossRefGoogle Scholar
  42. 42.
    G. Persson, Untersuchungen bei drei Fällen mit angeborenem Balkenmangel, Psychiatr. Neurol. Med. Psychol. (Leipzig) 22:448–455 (1970).Google Scholar
  43. 43.
    W. R. Kirschbaum, Agenesis of the corpus callosum and associated malformations, J. Neuropathol. Exp. Neurol. 6:78–94 (1947).CrossRefGoogle Scholar
  44. 44.
    J. H. Menkes, M. Philippart, and D. B. Clark, Hereditary partial agenesis of corpus callosum, Arch. Neurol. 11:198–208 (1964).CrossRefGoogle Scholar
  45. 45.
    J. G. Bossy, Morphological study of a case of complete isolated and asymptomatic agenesis of the corpus callosum, Arch. Anat. Histol. Embryol. 53:289–340 (1970).Google Scholar
  46. 46.
    N. Geschwind and E. A. Kaplan, A human cerebral disconnection syndrome, Neurology 12:675–685 (1962).CrossRefGoogle Scholar
  47. 47.
    M. S. Gazzaniga and H. Freedman, Observations in visual processes after posterior callosal section, Neurology 23:1126–1130 (1973).CrossRefGoogle Scholar
  48. 48.
    L. P. Solursh, A. L. Margulies, B. Ashem, and E. A. Stasiak, The relationships of agenesis of the corpus callosum to perception and learning, J. Nerv. Ment. Dis. 141:180–189 (1965).CrossRefGoogle Scholar
  49. 49.
    J. R. Russel and R. M. Reitan, Psychological abnormalities in agenesis of the corpus callosum, J. Nerv. Ment. Dis. 141:205–214 (1965).Google Scholar
  50. 50.
    W. R. Shapiro, G. H. Williams, and F. Plum, Spontaneous recurrent hypothermia accompanying agenesis of the corpus callosum, Brain 92:423–436 (1969).CrossRefGoogle Scholar
  51. 51.
    J. Guihard, A. Velot-Lerou, C. Poitrat, D. Laloum, and J. L’Hirondel, Hypothermie spontanee recidivante avec agenesie du corps calleux, Sem. Hop. Paris (Anuls Pediatr.) 47:645–656 (1971).Google Scholar
  52. 52.
    C.-M. Shaw and E. C. Alvord, Jr., Cava septi pellucidi et vergae: Their normal and pathological states, Brain 92:213–224 (1969).CrossRefGoogle Scholar
  53. 53.
    W. E. Bell and T. B. Summers, Agenesis of the septum pellucidum, Neurology 8:234–237 (1958).CrossRefGoogle Scholar
  54. 54.
    B. Peach, Arnold-Chiari malformation: Anatomic features of 20 cases, Arch. Neurol. 12:613–621 (1965).CrossRefGoogle Scholar
  55. 55.
    B. E. Sprofkin and J. W. Hillman, Moebius’s syndromc — Congenital oculofacial paralysis, Neurology 6:50–54 (1956).CrossRefGoogle Scholar
  56. 56.
    L. Crome, Pachygyria, J. Pathol. Bact. 71:335–352 (1956).CrossRefGoogle Scholar
  57. 57.
    A. S. Dekaban, Large defects in cerebral hemispheres associated with cortical dysgenesis, J. Neuropathol. Exp. Neurol. 24:512–530 (1965).CrossRefGoogle Scholar
  58. 58.
    J. B. Angevine and R. L. Sidman, Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse, Nature (Lond.) 192:766–768 (1961).CrossRefGoogle Scholar
  59. 59.
    M. Berry and A. W. Rogers, The migration of neuroblasts in the developing cerebral cortex, J. Anat. 99:691–709 (1965).Google Scholar
  60. 60.
    A. Brun, Marginal glioneural heterotopias of the central nervous system, Acta Pathol. Microbiol. Scand. 65:221–233 (1965).Google Scholar
  61. 61.
    G. A. de Leon, Observations on cerebral and cerebellar microgyria, Acta Neuropathol. 20:278–287 (1972).CrossRefGoogle Scholar
  62. 62.
    N. Grcevic and F. Robert, Verrucose dysplasia of the cerebral cortex, J. Neuropathol. Exp. Neurol. 20:399–411 (1961).CrossRefGoogle Scholar
  63. 63.
    S. A. K. Wilson, Megalencephaly, J. Neurol. Psychopathol. 14:193–198 (1934).CrossRefGoogle Scholar
  64. 64.
    L. Crome, Megalencephaly associated with hyaline pan-neuropathy, Brain 76:215–228 (1953).CrossRefGoogle Scholar
  65. 65.
    S. M. Aronson, B. W. Volk, and N. Epstein, Morphologic evolution of amaurotic family idiocy: The protracted phase of the disease, Am. J. Pathol. 1:609–631 (1955).Google Scholar
  66. 66.
    J. Apley and M. Symons, Megalencephaly: A report of 2 cases, Arch. Dis. Child. 22:172–174 (1947).CrossRefGoogle Scholar
  67. 67.
    E. C. Alvord and P. M. Marcuse, Intracranial cerebellar meningo-encephalocele (posterior fossa cyst) causing hydrocephalus by compression at the incisura tentorii, J. Neuropathol. Exp. Neurol. 21:50–69 (1962).CrossRefGoogle Scholar
  68. 68.
    B. O. Rand, E. L. Flotz, and E. C. Alvord, Intracranial telencephalic meningoencephalocele containing choroid plexus, J. Neuropathol. Exp. Neurol. 23:293 (1964).CrossRefGoogle Scholar
  69. 69.
    P. I. Yakovlev and R. C. Wadsworth, Schizencephalies: A study of the congenital clefts in the cerebral mantle. I. Clefts with fused lips, J. Neuropathol. Exp. Neurol. 5:116–000 (1946).CrossRefGoogle Scholar
  70. 70.
    A. MacFarlane and A. F. J. Maloney, The appearance of the aqueduct and its relationship to hydrocephalus in the Arnold-Chiari malformation, Brain 80:479–491 (1957).CrossRefGoogle Scholar
  71. 71.
    H. Noetzel, Stenosis or atresia of the aqueduct of Sylvius as a cause of congenital hydrocephalus, Dev. Med. Child. Neurol. 12, Suppl. 22:123–126 (1970).Google Scholar
  72. 72.
    A. J. Raimondi, G. Samuelson, L. Yarzagaray, and T. Norton, Atresia of the foramina of Luschka and Magendie: The Dandy-Walker cyst, J. Neurosurg. 31:202–216 (1969).CrossRefGoogle Scholar
  73. 73.
    J. H. Edwards, The syndrome of sex-linked hydrocephalus, Arch. Dis. Child. 36:486–493 (1961).CrossRefGoogle Scholar
  74. 74.
    M. W. Shannon and H. L. Nadler, Sex-linked hydrocephalus, J. Med. Genet. 5:326–328 (1968).CrossRefGoogle Scholar
  75. 75.
    J. Lorber and N. C. De, Family history of congenital hydrocephalus, Dev. Med. Child. Neurol 12, Suppl 22:94–100 (1970).Google Scholar
  76. 76.
    D. S. Russell, Observation on the pathology of hydrocephalus, Spec. Rep. Ser. Med. Res. Coun. No. 265 (1949).Google Scholar
  77. 77.
    B. Williams, Is aqueduct stenosis a result of hydrocephalus?, Brain 96:399–412 (1973).CrossRefGoogle Scholar
  78. 78.
    A. J. Raimondi, Angiographic diagnosis of hydrocephalus in the newborn, J. Neurosurg 31:550–560 (1969).CrossRefGoogle Scholar
  79. 79.
    E. Kazner, S. Kunze and W. Schiefer, Echoencephalography as an aid to the diagnosis of space-occupying lesions in the posterior fossa by measuring the size of the third and lateral ventricles, J. Neurosurg. 26:511–520 (1967).CrossRefGoogle Scholar
  80. 80.
    R. H. Ames, Ventriculo-peritoneal shunts in the management of hydrocephalus, J. Neurosurg. 27:525–529 (1967).CrossRefGoogle Scholar
  81. 81.
    C.M. Mansfield and C. Park, Congenital communicating hydrocephalus with evaluation of the transverse and confluent sinuses, Radiology 95:585–586 (1970).Google Scholar
  82. 82.
    W. J. Gardner, K. L. Smith, and D. H. Padget, The relationship of Arnold-Chiari and Dandy-Walker malformations, J. Neurosurg. 6:481–486 (1972).Google Scholar
  83. 83.
    J. Lorber, Systematic ventriculographic studies in infants born with meningomyelocele and encephalocele: The incidence and development of hydrocephalus, Arch. Dis. Child. 36:381–389 (1961).CrossRefGoogle Scholar
  84. 84.
    K. M. Laurence, The natural history of hydrocephalus, Lancet 2:1152–1154 (1958).CrossRefGoogle Scholar
  85. 85.
    D. P. Becker and F. E. Nulson, Control of hydrocephalus by valve-regulated venous shunt: Avoidance of complications in prolonged shunt maintenance, J. Neurosurg. 28:215–226 (1968).CrossRefGoogle Scholar
  86. 86.
    K. M. Laurence, New thoughts on spina bifida and hydrocephalus, Dev. Med. Child Nenrol. 5:68–69 (1963).CrossRefGoogle Scholar
  87. 87.
    C. S. Muir, Hydranencephaly and allied disorders, Arch. Dis. Child. 34:231–246 (1959).CrossRefGoogle Scholar
  88. 88.
    J. H. Halsey, Jr., N. Allen, and H. R. Chamberlin, The morphogenesis of hydranencephaly, J. Neurol. Sci. 12:187–217 (1971).CrossRefGoogle Scholar
  89. 89.
    M. Fowler, R. Dow, T. A. White, and C. H. Greer, Congenital hydrocephalus-hydrencephaly in five siblings, with autopsy studies: A new disease, Dev. Med. Child Neurol. 14:173–188 (1972).CrossRefGoogle Scholar
  90. 90.
    A. S. Dekaban, Effects of x-radiation on mouse fetus during gestation: Emphasis on distribution of cerebral lesions, Part II, J. Nucl. Med. 10:68–77 (1969).Google Scholar
  91. 91.
    M. Goldstein, R. J. Joynt, and R. B. Hartley, The long term effects of callosal sectioning. Arch. Neurol. 32:52–53 (1975).CrossRefGoogle Scholar
  92. 92.
    D. B. Shurtleff, R. Kromnal, and E. L. Foltz, Follow-up comparison of hydrocephalus with and without myelomeningocele. J. Neurosurg. 42:61–68 (1975).CrossRefGoogle Scholar
  93. 93.
    D. O. Davis and B. D. Pressman, Computerized tomography of the brain. Radiol. Clin. North Am. 12:297–313,1974.Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Anatole S. Dekaban
    • 1
  1. 1.Clinical Investigations Service, Developmental and Metabolic Neurology BranchNational Institute Neurological Diseases and StrokeBethesdaUSA

Personalised recommendations