Advertisement

Ionizing Radiations and the Nervous System

  • Ernest Furchtgott

Abstract

The rapid increase in the applications of atomic energy—ranging from military hardware to power generation to medicine—and the potential dangers associated with this form of energy have focused the attention of both the scientific community as well as the public on an understanding of the biological effects of these radiations. The beneficial uses of atomic energy such as the development of nuclear power plants and the use of radiations in medical diagnosis and treatment have raised difficult questions of weighing the potential benefits against risks. Subcommittees of the United States National Academy of Sciences (NAS)-National Research Council (NRC) (BEAR Committee) have published a series of reports between 1956 and 1961 dealing with different aspects of atomic radiation.(1) None of these reports, however, dealt specifically with the effects on the nervous system. More recently, in 1972, another committee of NAS-NRC published a reported entitled “The Effects on Populations of Exposure to Low Levels of Ionizing Radiation.”(2) In that report some references are made to the nervous system. In 1955 the General Assembly of the United Nations established a permanent Committee on the Scientific Effects of Atomic Radiation (UNSCEAR). The Committee consists of scientific representatives of 15 member nations, and it periodically reports on effects of human exposure to ionizing radiations. In 1969 the Committee published a report dealing specifically with the effects on the nervous system.(3)

Keywords

Aversive Conditioning Audiogenic Seizure Mental Deficiency External Granular Layer Irradiate Animal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    National Academy of Sciences, “Biological Effects of Atomic Radiations” NAS-NRC, Washington (1956-1961).Google Scholar
  2. 2.
    National Academy of Sciences, “The Effects on Populations of Exposure to Low Levels of Ionizing Radiations,” Report of the Advisory Committee on the Biological Effects of Ionizing Radiations, NAS-NRC, Washington (1972).Google Scholar
  3. 3.
    United Nations Scientific Committee on the Effects of Atomic Radiation. Report. General Assembly, Official Records; 24th Session, Supplement No. 13 (A/7613), New York (1969).Google Scholar
  4. 4.
    A. M. Weinberg, Science and trans-science, Minerva 10:209–222 (1972).Google Scholar
  5. 5.
    A. P. Cassarett, “Radiation Biology,” Prentice-Hall, Englewood Cliffs, N.J. (1968).Google Scholar
  6. 6.
    D. J. Pizzarello and R. L. Witcofski, “Basic Radiation Biology,” Lea & Febiger, Philadelphia (1967).Google Scholar
  7. 7.
    R. Rugh and E. Grupp, Exencephalia following x-irradiation and the preimplantation mammalian embryo, J. Neuropathol. Exp. Neurol. 18:468–481 (1959).Google Scholar
  8. 8.
    R. Rugh, Low levels of X-irradiation and the early mammalian embryo, Am. J. Roentgenol. Radium Ther. Nucl. Med. 87:559–566 (1962).Google Scholar
  9. 9.
    J. G. Wilson, R. L. Brent, and H. C. Jordan, Differentiation as a determinant of the reaction of rat embryos to X-irradiation, Proc. Soc. Exp. Biol. Med. 82:67–70 (1953).Google Scholar
  10. 10.
    J. G. Wilson and J. W. Karr, Effects of irradiation on embryonic development. I. X-rays on the 10th day of gestation in the rat, Am. J. Anat. 88:1–34 (1953).Google Scholar
  11. 11.
    U. Murakami, K. Hoshino, and Y. Kameyama, Mechanisms for the differential radiosensitivity of immature brain tissue: Development of hydrocephalus and allied conditions, in “Radiation Biology of the Fetal and Juvenile Mammal” (M. R. Sikov and D. D. Mahlum, eds.) pp. 755–768, U.S. Atomic Energy Commission, Washington (1969).Google Scholar
  12. 12.
    S. P. Hicks and C. J. D’Amato, Effects of ionizing radiation on mammalian development, in “Advances in Teratology” (D. H. M. Woollam, ed.) Vol. 1, pp. 195–250, Academic Press, New York (1966).Google Scholar
  13. 13.
    J. Altman, W. J. Anderson, and K. A. Wright, Early effects of X-irradiation of the cerebellum in infant rats: Decimation and reconstitution of the external granular layer, Exp. Neurol. 24:196–216 (1969).Google Scholar
  14. 14.
    J. W. Altman, W. J. Anderson, and K. A. Wright, Gross morphological consequences of irradiation of the cerebellum in infant rats with repeated doses of low level x-ray, Exp. Neurol. 21:69–91 (1968).Google Scholar
  15. 15.
    J. W. Altman, J. Anderson, and K. A. Wright, Differential radiosensitivity of stationary and migratory primitive cells of the brains of infant rats, Exp. Neurol. 22:52–74 (1968).Google Scholar
  16. 16.
    S. P. Hicks, B. L. Brown, and C. J. D’Amato, Regeneration and malformation in the nervous system, eye, mesenchyme of the mammalian embryo after radiation injury, Am. J. Pathol. 33:459–481(1957).Google Scholar
  17. 17.
    J. Altman and W. J. Anderson, Irradiation of the cerebellum in infant rats with low-level x-ray: Histological and cytological effects during infancy and adulthood, Exp. Neurol. 30:492–509 (1971).Google Scholar
  18. 18.
    E. J. Ebels, The influence of age upon the effect of early postnatal X-irradiation on the development of cerebellar cortex in rats, Acta Neuropathol. 15:298–307 (1970).Google Scholar
  19. 19.
    W. J. Anderson and J. Altman, Retardation of cerebellar and motor development in rats by focal X-irradiation beginning at four days, Physiol. Behav. 8:57–67 (1972).Google Scholar
  20. 20.
    R. L. Brent, The response of 9 1/2 day-old-rat embryo to variations in exposure rate of 150 R X-irradiation, Radiat. Res. 45:127–136 (1971).Google Scholar
  21. 21.
    K. R. Brizzee, A. N. D’Agostino, C. J. Bench, and L. A. Jacobs, Analysis of split-dose effects on cerebral hemisphere: Cell recovery following X-irradiation of the fetal brain, in “Radiation Biology of the Fetal and Juvenile Mammal” (M. R. Sikov and D. D. Mahlum, eds.) pp. 779–797, U.S. Atomic Energy Commission, Washington (1969).Google Scholar
  22. 22.
    M. Berry, B. G. Clendinnen, and J. T. Eayrs, Electrocortical activity in the rat X-irradiated during early development, Electroencephalog. Clin. Neurophysiol. 15:91–104 (1963).Google Scholar
  23. 23.
    R. Rugh, W. F. Cavenness, L. Duhamel, and G. S. Schwarz, Structural and functional (electro-encephalographic) changes in the postnatal mammalian brain resulting from X-irradiation of the embryo, Mil. Med. 128:392–408 (1963).Google Scholar
  24. 24.
    I. A. Piontkovsky, “function and Structure of the Animal Brain Exposed to Ionizing Irradiation During Prenatal Development,” Nauka, Moscow (1964) (in Russian).Google Scholar
  25. 25.
    H. G. Mikhailova, The effects of phenamine on self-stimulation in prenatally irradiated animals, in “Studies of Neuroradioembryological Effects,” Nauka, Moscow (1966) (in Russian).Google Scholar
  26. 26.
    T. Minamisawa, H. Sugiyama, T. Tsuchiya, and H. Eto, Effects of prenatal x-irradiation on the evoked potential in adult rabbits, J. Radiat. Res. 11:151–157 (1970).Google Scholar
  27. 27.
    D. S. Miller, Effects of low level radiation on audiogenic convulsive seizures in mice, in “Response of the Nervous System to Ionizing Radiation” (T. J. Haley and R. S. Snider, eds.) pp. 513–532, Academic Press, New York (1962).Google Scholar
  28. 28.
    R. S. Tacker and E. Furchtgott, Low-level gamma irradiation and audiogenic seizures of mice, Radiat. Res. 17:614–618 (1962).Google Scholar
  29. 29.
    J. Werboff, J. Havlena, and M. R. Sikov, Behavioral effects of small doses of acute X-irradiation administered prenatally, Atompraxis 9:103–105 (1963).Google Scholar
  30. 30.
    J. P. Cooke, S. O. Brown, and G. M. Krise, Prenatal chronic gamma irradiation and audiogenic seizures in rats, Exp. Neurol. 9:243–248 (1964).Google Scholar
  31. 31.
    J. Werboff, J. E. Broeder, J. Havlena, and M. R. Sikov, Effects of prenatal x-ray irradiation on audiogenic seizures in the rat, Exp. Neurol. 4:189–196 (1961).Google Scholar
  32. 32.
    A. Vernadakis, J. J. Curry, G. J. Maletta, G. Irvine, and P. S. Timiras, Convulsive responses in prenatally irradiated rats, Exp. Neurol. 16:57–64 (1966).Google Scholar
  33. 33.
    L. M. Geller, Audiogenic seizure susceptibility of rats X-irradiated in utero during first one third of pregnancy, Exp. Neurol. 29:268–280 (1970).Google Scholar
  34. 34.
    L. M. Geller, Audiogenic seizure susceptibility of rats X-irradiated in utero late in pregnancy, Exp. Neurol. 38:135–143 (1973).Google Scholar
  35. 35.
    L. M. Geller and D. Cowen, Sound-induced seizures in long-surviving prenatally X-irradiated rats, Exp. Neurol. 7:366–374 (1963).Google Scholar
  36. 36.
    R. Rugh and J. Wolff, Neurological corrollaries of neo-natal death following X-irradiation of the mouse fetus on gestation day 13.5, Mil. Med. 128:392–408 (1956).Google Scholar
  37. 37.
    M. R. Sikov, C. F. Resta, J. E. Lofstrom, and J. S. Meyer, Neurological deficits in the rat resulting from X-irradiation in utero, Exp. Neurol. 5:131–138 (1962).Google Scholar
  38. 37a.
    J. N. Yamazaki, L. R. Bennett, and C. D. Clemente, Behavioral and histological effects of head irradiation in newborn rats, in “Response of the Nervous System to Ionizing Radiation” (T. J. Haley and R. S. Snider, eds.) pp. 59–73, Academic Press, New York (1962).Google Scholar
  39. 38.
    E. Furchtgott and M. Echols, Locomotor coordination following pre-and neonatal X-irradiation, J. Comp. Physiol. Psychol. 51:292–294 (1958).Google Scholar
  40. 39.
    J. M. Lipton, Locomotor behavior and neuromorphological anomalies in prenatally and postnatally irradiated rats, Radiat. Res. 28:822–829 (1966).Google Scholar
  41. 40.
    J. C. Sharp, Effects of fetal X-irradiation on maze-learning ability and motor coordination in albino rats, J. Comp. Physiol. Psychol. 54:127–129 (1961).Google Scholar
  42. 41.
    S. Wechkin, R. Elder, and E. Furchtgott, Motor performance in the rat as a function of age and prenatal X-irradiation, J. Comp. Physiol. Psychol. 54:658–659 (1961).Google Scholar
  43. 42.
    J. Werboff, I. Goodman, J. Havlena, and M. R. Sikov, Effects of prenatal X-irradiation on motor performance in the rat, Am. J. Physiol. 201:703–706 (1961).Google Scholar
  44. 43.
    R. B. Wallace and J. Altman, Behavioral effects of neonatal irradiation of the cerebellum. I. Quantitative observations in infant and adolescent rats, Dev. Psychobiol. 2:257–265 (1970).Google Scholar
  45. 44.
    R. B. Wallace and J. Altman, Behavioral effects of neonatal irradiation of cerebellum. II. Quantitative studies in young-adult and adult rats, Dev. Psychobiol. 2:266–272 (1970).Google Scholar
  46. 45.
    J. Altman, W. J. Anderson, and M. Strop, Retardation of cerebellar and motor development by focal X-irradiation during infancy, Physiol. Behav. 7:143–150 (1971).Google Scholar
  47. 46.
    W. J. Anderson and J. Altman, Retardation of cerebellar and motor development in rats by focal X-irradiation beginning at four days, Physiol. Behav. 8:57–67 (1972).Google Scholar
  48. 47.
    R. B. Wallace, C. E. Daniels, and J. Altman, Behavioral effects of neonatal irradiation of the cerebellum. III. Qualitative observations, Dev. Psychobiol. 5:35–41 (1972).Google Scholar
  49. 48.
    H. J. Curtis, Biological mechanisms underlying the aging process, Science (Wash. D.C.) 141:686–694 (1963).Google Scholar
  50. 49.
    S. A. Gilmore, The effects of X-irradiation on the spinal cords of neonatal rats. I. Neurological observations, J. Neuropathol. Exp. Neurol. 22:285–293 (1963).Google Scholar
  51. 50.
    S. A. Gilmore, The effects of X-irradiation on the spinal cords of neonatal rats. II. Histological observations, J. Neuropathol. Exp. Neurol. 22:294–301 (1963).Google Scholar
  52. 51.
    E. Furchtgott and M. Echols, Activity and emotionality in pre-and neonatally X-irradiated rats, J. Comp. Physiol. Psychol. 51:541–545 (1958).Google Scholar
  53. 52.
    E. Furchtgott, R. S. Tacker, and D. O. Draper, Open-field behavior and heart rate in prenatally X-irradiated rats, Teratology 1:201–206 (1968).Google Scholar
  54. 53.
    J. Werboff, J. Havlena, and M. R. Sikov, Effects of prenatal X-irradiation on activity, emotionality and maze-learning in the rat, Radiat. Res. 16:441–452 (1962).Google Scholar
  55. 54.
    M. Manosevitz and J. R. Rostkowski, The effects of neonatal irradiation on postnatal activity and elimination, Radiat. Res. 28:701–707 (1966).Google Scholar
  56. 55.
    D. J. Nash, A. Napoleon, and L. E. Sprackling, Neonatal irradiation and postnatal behavior, Radiat. Res. 41:594–601 (1970).Google Scholar
  57. 56.
    E. W. Hupp, H. B. Pace, E. Furchtgott, and R. L. Murphree, Effect of fetal irradiation on mating activity in male rats, Psychol. Rep. 7:289–294 (1960).Google Scholar
  58. 57.
    V. Semagin, A conditioned reflex study in neuroradiobiology, Zh. Vyssh. Nervn. Deyat. Im. I. P. Pavlova 18:11–18 (1968) (in Russian).Google Scholar
  59. 58.
    H. Fowler, S. P. Hicks, C. D’Amato, and F. A. Beach, Effects of fetal irradiation on behavior in the albino rat, J. Comp. Physiol. Psychol. 55:309–314 (1962).Google Scholar
  60. 59.
    S. Walker and E. Furchtgott, Effects of prenatal X-irradiation on the acquisition, extinction, and discrimination of a classically conditioned response, Radiat. Res. 42:120–128 (1970).Google Scholar
  61. 60.
    E. Furchtgott, M. Echols, and J. W. Openshaw, Maze learning in pre-and neonatally X-irradiated rats, J. Comp. Physiol. Psychol. 51:178–180 (1958).Google Scholar
  62. 61.
    B. Levinson and H. P. Zeigler, The effects of neonatal X-irradiation upon learning in the rat, J. Comp. Physiol. Psychol. 52:53–55 (1959).Google Scholar
  63. 62.
    E. Furchtgott and S. Wechkin, Avoidance conditioning as a function of prenatal X-irradiation and age, J. Comp. Physiol. Psychol. 55:69–72 (1962).Google Scholar
  64. 63.
    E. Deagle and E. Furchtgott, Passive avoidance in prenatally X-irradiated rats, Dev. Psychobiol. 1:90–92(1968).Google Scholar
  65. 64.
    J. C. Sharp, The effects of prenatal X-irradiation on acquisition, retention, and extinction of a conditioned emotional response, Radiat. Res. 24:154–157 (1965).Google Scholar
  66. 65.
    E. Furchtgott, J. R. Jones, R. S. Tacker, and J. Deagle, Aversive conditioning in prenatally irradiated rats, Physiol. Behav. 5:571–576 (1970).Google Scholar
  67. 66.
    A. S. Dekaban, Abnormalities in children exposed to X-irradiation during various stages of gestation: Tentative timetable of radiation injury to the human fetus, Part I, J. Nucl. Med. 7:471–477 (1968).Google Scholar
  68. 67.
    J. W. Wood, K. G. Johnson, and Y. Omori, In utero exposure to the Hiroshima atomic bomb: An evaluation of head size and mental retardation; twenty years later, Pediatrics 39:385–392 (1967).Google Scholar
  69. 68.
    W. W. Sutow and R. A. Conard, The effects of fallout radiation on Marshallese children, in “Radiation Biology of the Fetal and Juvenile Mammal” (M. R. Sikov and D. D. Mahlum, eds.) pp. 661–674, U.S. Atomic Energy Commision, Washington (1969).Google Scholar
  70. 69.
    R. E. Albert, A. R. Omran, E. W. Brauer, D. C. Dove, N. C. Cohen, H. Schmidt, R. Baumring, S. Morrill, R. Schulz, and R. L. Baer, Follow-up study of patients treated by X-ray for tinea capitis, Am. J. Public Health 56:2114–2120 (1966).Google Scholar
  71. 70.
    K. Nokkentved, “Effect of Diagnostic Radiation upon the Human Fetus,” Munksgaard, Copenhagen (1968).Google Scholar
  72. 71.
    A. Stewart and R. Barber, The epidemiological importance of childhood cancers, Br. Med. Bull. 27:64–70 (1971).Google Scholar
  73. 72.
    B. McMahon, Prenatal x-ray exposure and childhood cancer, J. Natl. Cancer Inst. 28:1173–1191 (1962).Google Scholar
  74. 73.
    L. M. Schuman and W. H. Gullen, Background radiation and Down’s syndrome, Ann. N.Y. Acad. Sci. 171:441–453 (1970).Google Scholar
  75. 74.
    B. E. Oppenheim, M. L. Griem, and P. Meier, Effects of low-dose prenatal irradiation in humans: Analysis of Chicago lying-in data and comparison with other studies, Radiat. Res. 57:508–544 (1974).Google Scholar
  76. 75.
    W. Zeman, T. Samorajski, and H. J. Curtis, Histochemical studies on mouse brains irradiated with high energy deuteron microbeams, in “Effects of Ionizing Radiation on the Nervous System; Proceedings,” pp. 297–308, International Atomic Energy Agency, Vienna (1962).Google Scholar
  77. 76.
    R. Brownson, D. Suter, and D. Diller, Acute brain damage induced by low dosage X-irradiation, Neurology 13:181–191 (1963).Google Scholar
  78. 77.
    S. P. Hicks and P. O’B. Montgomery, Effects of acute radiation on the adult mammalian central nervous system, Proc. Soc. Exp. Biol. Med. 80:15–18 (1952).Google Scholar
  79. 78.
    J. Miquel, I. Klatzo, D. Menzel and W. Haymaker, Glycogen changes in X-irradiated rat brain, Acta Neuropathol. 2:482–490 (1963).Google Scholar
  80. 79.
    W. Lierse, K. Gritz, and H. D. Franke, Histochemical detection of glycogen and mucopolysaccharides in the brain of guinea pigs after X-irradiation, Fortschr. Geb. R’ôntgenstr. Nuklearmed. 103:612–618 (1965).Google Scholar
  81. 80.
    D. S. Maxwell and L. Kruger, Electronmicroscopy of radiation induced laminar lesions in the cerebral cortex, in “Response of the Nervous System to Ionizing Radiations” (T. J. Haley and R. S. Snider, eds.) pp. 54–83, Little, Brown, Boston (1964).Google Scholar
  82. 81.
    H. D. Franke and W. Lierse, Ultrastructural radioreaction on guinea pig brains, Strahlentherapie Sonderbände 62:138–142 (1966).Google Scholar
  83. 82.
    W. Lierse and H. D. Franke, Early changes in the ultrastructure of the cerebellum of guinea pigs following “Co irradiation of the head”, Strahlentherapie 131:595–602 (1966).Google Scholar
  84. 83.
    C. D. Clemente and E. A. Holst, Pathological changes in neurons, neurologlia, and bloodbrain barrier induced by X-irradiation of heads of monkeys, A.M.A. Arch. Neurol. Psychiatr. 71:66–79 (1954).Google Scholar
  85. 84.
    R. S. Lyman, P. S. Kupalov, and W. Scholz, Effect of roentgen rays on the central nervous system: Results of large doses on the brains of adult dogs. A.M.A. Arch. Neurol. Psychiatr. 29:56–87 (1933).Google Scholar
  86. 85.
    N. O. Berg and M. Lindgren, Relation between field size and tolerance of rabbit’s brain to roentgen irradiation (200 kV) via a split-shaped field, Acta Radiol. 1:147–168 (1963).Google Scholar
  87. 86.
    W. Zeman, The effects of atomic radiation, in “Pathology of the Nervous System” (J. Minckler, ed.) Vol. 1, pp. 864–939, McGraw-Hill, New York (1968).Google Scholar
  88. 87.
    W. J. Haymaker, M. Z. M. Ibrahim, and J. Miquel, Acute changes in the central nervous system of monkeys exposed to protons, J. Neuropathol. Exp. Neurol. 31:72–101 (1972).Google Scholar
  89. 88.
    M. V. Kirzon and M. G. Pshenikova, Propagation of non-impulse effects along a nerve from a region exposed to X-irradiation, Biofizika 2:686–697 (1957) (in Russian).Google Scholar
  90. 89.
    K. B. Dawson and D. Rosen, Increased response of the frog nerve-muscle preparation following X-irradiation, in “Effects of Ionizing Radiation on the Nervous System; Proceedings,” pp. 43–50, International Atomic Energy Agency, Vienna (1962).Google Scholar
  91. 90.
    C. S. Bachofer, Enhancement of activity of nerves by x-rays, Science (Wash. D.C.) 125:1140–1141 (1957).Google Scholar
  92. 91.
    C. S. Bachofer and M. E. Gautereaux, Bioelectric activity of mammalian nerves during X-ir-radiation, Radiat. Res. 12:575–586 (1960).Google Scholar
  93. 92.
    N. Allen and J. G. Nicholls, A study of the effect of x-rays on the electrical properties of mammalian nerve and muscle, Proc. R. Soc. (Lond.) B 157:536–561 (1963).Google Scholar
  94. 93.
    C. T. Gaffey, The response of maximal and submaximal action potentials from frog sciatic nerve to 200-kV x-rays, Radiat. Res. 45:311–325 (1971).Google Scholar
  95. 94.
    E. Linder, Functional and morphological states of peripheral nerves at a long time interval after irradiation, Fortschr. Geb. Röntgenstr. Nuklearmed. 90:618–624 (1959).Google Scholar
  96. 95.
    K. Vanselow, The effect of ionizing radiation on the variation of neural excitation threshold level, Atomkernenergie 11:493–495 (1966).Google Scholar
  97. 96.
    R. Seymour and K. B. Dawson, Effects of x-rays combined with other agents on the excitability of frog sciatic nerve, Int. J. Rad. Biol. 13:171–178 (1967).Google Scholar
  98. 97.
    R. L. McLaurin, O. T. Bailey, G. R. Harsh, and F. D. Ingraham, The effects of gamma and roentgen radiation on the intact spinal cord of the monkey, Am. J. Roentgenol. Radium Ther. Nucl. Med. 73:827–835 (1955).Google Scholar
  99. 98.
    L. M. Davidoff, C. G. Dyke, C. A. Eisberg, and I. M. Tarlov, The effect of radiation applied directly to brain and spinal cord. I. Experimental investigations on Macacus rhesus monkeys, Radiology 31:451–463 (1938).Google Scholar
  100. 99.
    B. Larsson, L. Leksell, B. Rexed, and P. Sourander, Effect of high energy protons on the spinal cord, Acta Radiol. 51:52–64 (1959).Google Scholar
  101. 100.
    K. Carrington, F. D. Fowler, and E. A. Bering, Jr., Acute effects of X-irradiation on reflex arcs of the spinal cord, Neurology 9:251–255 (1959).Google Scholar
  102. 101.
    J. R. Lott, Changes in ventral root potentials during X-irradiation of the spinal cord in the cat, in “Effects of Ionizing Radiation on the Nervous System; Proceedings,” pp. 85–92, International Atomic Energy Agency, Vienna (1962).Google Scholar
  103. 102.
    M. Sato, G. Austin, and W. Stahl, The effects of ionizing radiation on spinal cord neurons, in “Response of the Nervous System to Ionizing Radiation” (T. J. Haley and R. S. Snider, eds.) pp. 561–571, Academic Press, New York (1962).Google Scholar
  104. 103.
    K. E. Olson and C. D. Barnes, The effect of brain stem irradiation on descending systems to the spinal cord, Radiat. Res. 44:404–412 (1970).Google Scholar
  105. 104.
    W. O. Caster, E. S. Redgate, and W. D. Armstrong, Changes in the central nervous system after 700 R total-body X-irradiation, Radiat. Res. 8:92–97 (1958).Google Scholar
  106. 105.
    E. Eldred and W. W. Trowbridge, Neurological and EEG findings in the monkey after total-body X-irradiation, Electroencephalogr. Clin. Neurophysiol. 5:259–270 (1953).Google Scholar
  107. 106.
    O. T. Bailey, F. D. Ingraham, and E. A. Bering, The late effects of Tantalum-182 radiation on the cerebral cortex of monkeys, J. Neuropathol. Exp. Neurol. 17:151–157 (1958).Google Scholar
  108. 107.
    P. Naitoh, F. A. Spurrell, and G. T. Heistad, Effect of whole brain 60 Co gamma irradiation on cortical arousal in the burro, Electroencephalogr. Clin. Neurophysiol. 19:172–181 (1965).Google Scholar
  109. 108.
    J. A. T. Ross, S. R. Leavitt, E. A. Holst, and C. D. Clemente, Neurological and electroencephalographic effects of X-irradiation of the head in monkeys, A.M.A. Arch. Neurol. Psychiatr. 71:238–241 (1954).Google Scholar
  110. 109.
    P. M. Brooks, The prompt effects of whole-body irradiation at a high dose rate on the electroencephalogram of monkeys, Radiat. Res. 4:206–216 (1956).Google Scholar
  111. 110.
    M. W. Kramer and S. M. Michaelson, Late pathophysiological changes in head X-irradiated dogs; review and clinical correlations, Radiat. Res. 49:563–588 (1972).Google Scholar
  112. 111.
    H. Gangloff, Acute effects of X-irradiation on brain electrical activity in cats and rabbits, in “Effects of Ionizing Radiation on the Nervous System; Proceedings,” pp. 123–135, International Atomic Energy Agency, Vienna (1962).Google Scholar
  113. 112.
    H. Gangloff and T. J. Haley, Effects of X-irradiation on spontaneous and evoked brain electrical activity in cats, Radiat. Res. 12:694–704 (1960).Google Scholar
  114. 113.
    M. Monnier and P. Krupp, Early action of gamma radiations on electrical brain activity and behavior in the rabbit, Exp. Neurol. 3:419–431 (1961).Google Scholar
  115. 114.
    R. L. Schoenbrun, E. Campeau, and W. R. Adey, EEG and behavioral effects from X-irradiation of the hippocampal system, in “Response of the Nervous System to Ionizing Radiation” (2nd International Symposium) pp. 591–620, Little, Brown, Boston (1964).Google Scholar
  116. 115.
    P. Bonet-Maury and F. Patti, Lethal irradiation of mice with high doses of roentgen and gamma rays, Radiology 57:419–423 (1951).Google Scholar
  117. 116.
    H. L. Andrews and K. C. Brace, Terminal phenomena associated with massive doses of x-rays, Am. J. Physiol. 175:138–140 (1953).Google Scholar
  118. 117.
    J. S. Schwartzbaum, E. L. Hunt, B. P. Davies, and D. J. Kimeldorf, The effect of wholebody X-irradiation on the electroconvulsive threshold in the rat, J. Comp. Physiol. Psychol. 51:181–184 (1958).Google Scholar
  119. 118.
    F. Rosenthal and P. S. Timiras, Threshold and pattern of electroshock seizures after 250 R whole-body X-irradiation in rats, Proc. Soc. Exp. Biol. Med. 108:267–270 (1961).Google Scholar
  120. 119.
    M. Pollack and P. S. Timiras, X-ray dose and electroconvulsive responses in adult rats, Radiat. Res. 21:111–119 (1964).Google Scholar
  121. 120.
    N. M. Sherwood, G. P. Welch and P. S. Timiras, Changes in electroconvulsive thresholds and patterns in rats after x-ray and high energy proton irradiation, Radiat. Res. 30:374–390 (1967).Google Scholar
  122. 121.
    D. J. Kimeldorf and E. L. Hunt, “Ionizing Radiation: Neural Function and Behavior,” Academic Press, New York (1965).Google Scholar
  123. 122.
    P. A. Cibis, W. K. Noell, and B. Eichel, Ocular effects produced by high-intensity X-radiation, A.M.A. Arch. Ophthalmol. 53:651–663 (1955).Google Scholar
  124. 123.
    P. A. Cibis and D. V. L. Brown, Retinal changes following ionizing radiation, Am. J. Ophthalmol. 40, Part II:84–88 (1955).Google Scholar
  125. 124.
    S. Lerman, Radiation cataractogenesis, N.Y. State J. Med. 62:3075–3085 (1962).Google Scholar
  126. 125.
    W. L. Brown and A. A. McDowell, Visual acuity performance of normal and chronic irradiated monkeys, J. Genet. Psychol. 96:133–137 (1960).Google Scholar
  127. 126.
    A. A. McDowell and W. L. Brown, Visual acuity performance of normal and chronic focalhead irradiated monkeys, J. Genet. Psychol. 93:139–144 (1960).Google Scholar
  128. 127.
    E. S. Graham, D. N. Farrer, A. L. Carsten, and L. Roizin, Decrements in the visual acuity of Rhesus monkeys (Macaca mulatto) as a delayed effect of occipital cortex irradiation, Radiat. Res. 45:373–383 (1971).Google Scholar
  129. 128.
    W. F. Cavenness, A. Tanaka, K. H. Hess, T. L. Kemper, M. O. M. Tso, and L. E. Zimmerman, Delayed brain swelling and functional derangement after X-irradiation of the right visual cortex in the Macaca mulatto. Radiat. Res. 57:104–120 (1974).Google Scholar
  130. 129.
    T. Minamisawa, H. Sugiyama, T. Tsuchiya, and H. Eto, Effects of X-irradiation on evoked potentials from visual system in rabbits, J. Radiat. Res. 11(3-4):127–133 (1970).Google Scholar
  131. 130.
    T. Minamisawa, T. Tsuchiya, and H. Eto, Changes in the averaged evoked potentials of the rabbit during and after fractionated X-irradiation, Electroencephalogr. Clin. Neurophysiol. 33:591–601 (1972).Google Scholar
  132. 131.
    J. E. Murphy and J. D. Harris, Negligible effects of X-irradiation of the head upon hearing in the rat, J. Aud. Res. 1:117–132 (1961).Google Scholar
  133. 132.
    A. Casey and G. M. Krise, Effect of radiation on audition and conditioned responses in the Spanish goat, Percept. Mot. Skills 20:871–872 (1965).Google Scholar
  134. 133.
    O. Novotny, Über die Einwirkung der Röntgenbestrahlung auf das Labyrinth und artefizielle Knochendefekte beim Meerschweinchen, Monatsschr. Ohrenheilkd. Laryngo-Rhinol. 85:178–181 (1951).Google Scholar
  135. 134.
    S. Borsanyi, The effects of radiation therapy on the ear: With particular reference to radiation Otitis media, South. Med. J. 55:740–743 (1962).Google Scholar
  136. 135.
    B. Lindemann, Zur Frage der Radiosensibilität des peripheren Nervensystems, Fortschr. Geb. Roentgenbestr. 71:988–993 (1949).Google Scholar
  137. 136.
    H. Kalmus and D. Farnsworth, Impairment and recovery of taste following irradiation of the oropharynx, J. Laryngol. Otol. 73:180–182 (1959).Google Scholar
  138. 137.
    Yu G Grigoryev, “Data on the Reactions of the Human Central Nervous System to Ionizing Radiations,” State Publishing House, Moscow, 1958, USAEC Report AEC-tr-4284 (1960).Google Scholar
  139. 138.
    G. Shaber, Alterations of taste thresholds in the rat following low dose X-irradiation, Radiat. Res. 47:689–703 (1971).Google Scholar
  140. 139.
    A. D. Conger, Loss and recovery of taste acuity in patients irradiated in the oral cavity, Radiat. Res. 53:338–347 (1973).Google Scholar
  141. 140.
    D. C. Jones, D. J. Kimeldorf, D. O. Rubadeau, G. K. Osborn, and T. J. Castanera, Effect of X-irradiation on performance of volitional activity by the adult male rat, Am. J. Physiol. 177:243–250 (1954).Google Scholar
  142. 141.
    D. C. Jones, D. J. Kimeldorf, G. K. Osborn, T. J. Castanera, and D. O. Rubadeau, Volitional activity response of rats to partial-body X-irradiation, Am. J. Physiol. 189:15–20 (1957).Google Scholar
  143. 142.
    A. V. Lebedinskiy and Z. N. Nakhilnitskaya, “Effects of Ionizing Radiations on the Nervous System,” Moscow, State Publishing House (1960); Scripta Technica (Translation) Elsevier, Amsterdam (1963).Google Scholar
  144. 143.
    N. N. Livshits, Physiological effects of nuclear radiations on the central nervous system, Adv. Biol. Med. Phys. 7:173–248, 343-344 (1960).Google Scholar
  145. 144.
    L. J. Peacock and W. T. James, Effects of repeated small doses of gamma radiation on conditioned reflexes, in “Response of the Nervous System to Ionizing Radiation” (T. J. Haley and R. S. Snider, eds.) pp. 625–631, Little, Brown, Boston (1964).Google Scholar
  146. 145.
    W. J. Arnold, Behavioral effects of cranial irradiation of rats, in “Response of the Nervous System to Ionizing Radiation” (T. J. Haley and R. S. Snider, eds.) pp. 669–682, Academic Press, New York (1962).Google Scholar
  147. 146.
    W. J. Arnold, Maze learning after X-irradiation of the head, J. Comp. Physiol. Psychol. 45:358–361 (1952).Google Scholar
  148. 147.
    W. C. Blair and W. J. Arnold, The effects of cranial X-radiation on retention of maze learning in rats, J. Comp. Physiol. Psychol. 49:525–528 (1956).Google Scholar
  149. 148.
    E. Furchtgott, Effects of total-body X-irradiation on learning: An exploratory study, J. Comp. Physiol. Psychol. 44:197–203 (1951).Google Scholar
  150. 149.
    B. B. Scarborough, J. Martin, and W. A. McLaurin, Ionizing radiation: Effects of repeated low dose exposure, Physiol. Behav. 1:147–150 (1966).Google Scholar
  151. 150.
    J. M. Ordy, H. W. Barnes, T. Samorajski, H. J. Curtis, L. Wolin, and W. Zeman, Pathologic and behavioral changes in mice after deuteron irradiation of the central nervous system, Radiat. Res. 18:31–45 (1963).Google Scholar
  152. 151.
    D. H. Burt and E. H. Ingersoll, Behavioral and neuropathological changes in the rat following X-irradiation of the frontal brain, J. Comp. Physiol. Psychol. 59:90–93 (1965).Google Scholar
  153. 152.
    E. H. Ingersoll, A. L. Carsten, and R. H. Brownson, Behavioral and structural changes following X-irradiation of the forebrain in the rat, Proc. Soc. Exp. Biol. Med. 125:382–385 (1967).Google Scholar
  154. 153.
    R. T. Davis, The radiation syndrome, in “Behavior of Nonhuman Primates” (A. M. Schrier, H. F. Harlow, and F. Stollnitz, eds.) pp. 495–524, Academic Press, New York (1965).Google Scholar
  155. 154.
    C. L. Turbifyll, R. M. Roudon, and V. A. Kiefer, Behavior and physiology of the monkey (Macaca mulatto) following 2500 rads of pulsed gamma-neutron radiation, Aerosp. Med. 43:41–45 (1972).Google Scholar
  156. 155.
    R. L. Chaput and E. L. Barron, Postirradiation performance of miniature pigs as modified by tasks, Radiat. Res. 53:392–401 (1973).Google Scholar
  157. 156.
    R. E. George, R. L. Chaput, D. M. Verelli, and E. L. Barron, Relative effectiveness of fission neutrons for miniature pig performance decrement, Radiat. Res. 48:332–345 (1971).Google Scholar
  158. 157.
    R. L. Chaput and R. T. Kovacic, Miniature pig performance after fractionated supralethal doses of ionizing radiation, Radiat. Res. 44:807–820 (1970).Google Scholar
  159. 158.
    A. A. Cassarett and C. L. Comar, Incapacitation and performance decrement in rats following split doses of fission spectrum in rats, Radiat. Res. 53:455–461 (1973).Google Scholar
  160. 159.
    S. L. Nielsen, R. N. Kjellberg, A. K. Asbury, and A. M. Koehler, Neuropathologic effects of proton-beam irradiation in man. II. Evaluation after pituitary irradiation, Acta Neuropathol. 21:76–82 (1972).Google Scholar
  161. 160.
    R. G. Larkins and F. I. R. Martin, Hypopituitarism after extracranial irradiation, Br. Med. J. 1 (no. 5846): 152–153 (1973).Google Scholar
  162. 161.
    F. M. Sosnovskaya, Study of brain bioelectrical activity in persons exposed to chronic ionizing radiations, Zh. Nevropatol. Psikhiatr. Im. S. S. Korsakova 12:205–209 (1971) (in Russian).Google Scholar
  163. 162.
    N. Wald and G. E. Thomas, Jr., “Radiation Accidents: Medical Aspects of Neutron and Gamma-Ray Exposure,” USAEC Report ORNL-2748, Part B, Oak Ridge National Laboratory (1961).Google Scholar
  164. 163.
    D. R. Hollingsworth, J. W. Hollingsworth, S. Bogitch, and R. H. Keehn, Neuro-muscular tests of aging in Hiroshima subjects, J. Gerontol. 24:276–283 (1969).Google Scholar
  165. 164.
    R. B. Payne, Effects of Acute Radiation Exposure on Human Performance, USAF School of Aerospace Med. Aeromed. Rev. 3–63, Brooks AFB, Texas (1963).Google Scholar
  166. 165.
    L. A. Gottschalk, R. Kunkel, T. H. Wohl, E. L. Saenger, and C. N. Winget, Total and halfbody irradiation: Effect on cognitive and emotional processes, A.M.A. Arch. Gen. Psychiatr. 21:547–580 (1969).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Ernest Furchtgott
    • 1
  1. 1.Department of PsychologyUniversity of South CarolinaColumbiaUSA

Personalised recommendations