Advertisement

Pathogenesis of Slow Infections of the Central Nervous System

  • Richard I. Carp
  • Halldor Thormar

Abstract

The concept of slow infections was introduced by Sigurdsson to characterize a group of diseases in sheep that he was studying in Iceland in the early 1950s.(1) These diseases included rida (the Icelandic term for scrapie), visna, maedi, and pulmonary adenomatosis, and they were characterized by: (1) a long interval between infection and the initial clinical signs of disease, and (2) a protracted clinical course, usually ending in serious illness or death. Initially Sigurdsson listed a third characteristic of slow infections, namely, that the particular disease would be restricted to one organ. As Sigurdsson suggested might happen, this point is no longer included as a criterion for slow infections. Since that time a number of diseases have been added to the list of known slow infections, including for man: kuru, Creutzfeldt-Jakob disease, subacute sclerosing panencephalitis (SSPE), and progressive multifocal leukoencephalopathy (PML). In animals recent additions to the list include mink encephalopathy and Aleutian mink disease. The number of diseases of the central nervous system (CNS) of man that may be caused by an infectious agent and that therefore would probably be placed in the slow infection category include multiple sclerosis, Parkinsonism, amylotrophic lateral sclerosis, Pick’s disease, Alzheimer’s disease, Huntington’s chorea, Schilder’s disease, metachromatic leukodystrophy, and myoclonic epilepsy.(2)

Keywords

Progressive Multi Focal Leukoencephalopathy Measle Virus Progressive Multifocal Leukoencephalopathy Subacute Sclerosing Panencephalitis Scrapie Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Sigurdsson, Observations on three slow infections of sheep, Br. Vet J. 110:255–270, 307-322, 341-354 (1954).Google Scholar
  2. 2.
    D. C. Gajdusek, Slow virus diseases of the central nervous system, Am. J. Clin. Pathol. 56:320–332 (1971).Google Scholar
  3. 3.
    H. Thormar, Slow infections of the central nervous system, Z. Neurol. 199:1–23, 151-166 (1971).Google Scholar
  4. 4.
    P. W. Lampert, D. C. Gajdusek, and C. J. Gibbs, Jr., Subacute spongiform virus encephalopathies, Am. J. Pathol. 68:626–646 (1972).Google Scholar
  5. 5.
    H. Thormar, F. H. Lin, and S. C. Karl, Effects of viral infections on the brain, in “Biology of Brain Dysfunction” (Gerald E. Gaull, Ed.) pp. 191–228, Plenum Press, New York (1972).Google Scholar
  6. 6.
    J. H. Connolly, M. Haire, and D. S. M. Hadden, Measles immunoglobulins in subacute sclerosing panencephalitis, Br. Med. J. 1:23–25 (1971).Google Scholar
  7. 7.
    C. J. Gibbs, Jr., D. C. Gajdusek, and J. A. Morris, in “Slow Latent and Temperate Virus Infections” (D. C. Gajdusek, C. J. Gibbs, Jr., and M. Alpers, eds.) pp. 195–202, NINDB Monograph No. 2, Publication No. 1378, Public Health Service, Washington (1965).Google Scholar
  8. 8.
    M. C. Clarke and D. A. Haig, Attempts to demonstrate neutralizing antibodies in the sera of scrapie-affected animals, Vet. Rec. 78:647–649 (1966).Google Scholar
  9. 9.
    W. J. Hadlow, Scrapie and kuru, Lancet 2:289–290 (1959).Google Scholar
  10. 10.
    G. D. Hunter, Scrapie: A prototype slow infection, J. Infect. Dis. 125:427–440 (1972).Google Scholar
  11. 11.
    R. H. Kimberlin, Scrapie in the mouse: A model slow disease, Merrow Monograph, Watford (1974) (in press).Google Scholar
  12. 12.
    D. R. Wilson, R. D. Anderson, and W. Smith, Studies in scrapie, J. Comp. Pathol. 60:267–282 (1950).Google Scholar
  13. 13.
    J. L. Hourrigan, A. L. Klingsporn, H. A. McDaniel, and M. N. Riemenschneider, Natural scrapie in a goat, J. Am. Vet. Med. Assoc. 154:538–539 (1969).Google Scholar
  14. 14.
    R. L. Chandler, Experimental scrapie in the mouse, Res. Vet. Sci. 4:276–285 (1963).Google Scholar
  15. 15.
    A. L. Klingsporn, J. L. Hourrigan, and H. A. McDaniel, Scrapie-irradication and field trial study of the natural disease, J. Am. Vet. Med. Assoc. 155:2172–2177 (1969).Google Scholar
  16. 16.
    I. H. Pattison, in “Slow, Latent, and Temperate Virus Infections” (D. C. Gajdusek, C. J. Gibbs, Jr., and M. Alpers, eds.) pp. 249–251, NINDB, Monograph No. 2, Publication No. 1378, Public Health Service, Washington (1965).Google Scholar
  17. 17.
    W. J. Hadlow, The pathology of experimental scrapie in the dairy goat, Res. Vet. Sci. 2:289–314 (1961).Google Scholar
  18. 18.
    I.H. Pattison and I. Smith, Histological observations on experimental scrapie in the mouse, Res. Vet. Sci. 4:269–275 (1963).Google Scholar
  19. 19.
    E. Beck and P. M. Daniel, in “Slow, Latent, and Temperate Virus Infections” (D. C. Gajdusek, C. J. Gibbs, Jr., and M. Alpers, eds) pp. 203–206, NINDB Monograph No. 2, Publication No. 1378, Public Health Service, Washington (1965).Google Scholar
  20. 20.
    R. H. Kimberlin and G. C. Millson, Scrapie in young mice, Lancet 1:443–444, (1972).Google Scholar
  21. 21.
    E. J. Field, Invasion of the mouse nervous system by scrapie agent, Br. J. Exp. Pathol. 6:662–664 (1967).Google Scholar
  22. 22.
    C. M. Eklund, R. C. Kennedy, and W. J. Hadlow, in “Slow, Latent, and Temperate Virus Infections” (D. C. Gajdusek, C. J. Gibbs, Jr., and M. Alpers, eds.) pp. 207–208, NINDB Monograph No. 2, Publication No. 1378, Public Health Service, Washington (1965).Google Scholar
  23. 23.
    M. C. Clarke and D. A. Haig, Presence of transmissible agent of scrapie in the serum of affected mice and rats, Vet. Rec. 80:504 (1967).Google Scholar
  24. 24.
    E. J. Field, E. A. Caspary, and G. Joyce, Scrapie agent in the blood, Vet. Rec. 83:109–110 (1968).Google Scholar
  25. 25.
    I. H. Pattison, G. C. Millson, and K. Smith, An examination of the action of whole blood, blood cells or serum on the goat scrapie agent, Res. Vet. Sci. 5:116–121 (1964).Google Scholar
  26. 26.
    M. Worthington and R. Clark, Lack of effect of immunosuppression on scrapie infection in mice, J. Gen. Virol. 13:349–351 (1971).Google Scholar
  27. 27.
    D. E. McFarlin, M. C. Raff, E. Simpson, and S. H. Nehlsen, Scrapie in immunologically deficient mice, Nature (Lond.) 233:336 (1971).Google Scholar
  28. 28.
    A. C. Gardiner and A. A. Marucci, Immunological responsiveness of scrapie infected mice, J. Comp. Pathol. 79:233–235 (1969).Google Scholar
  29. 29.
    E. J. Field and B. K. Shenton, Rapid diagnosis of scrapie in the mouse, Nature (Lond.) 240:104–106 (1972).Google Scholar
  30. 30.
    E. J. Field and B. K. Shenton, A rapid immunologic test for scrapie in sheep, Am. J. Vet. Res. 35:393–395 (1974).Google Scholar
  31. 31.
    A. C. Gardiner, Gel diffusion reactions of tissues and sera from scrapie affected animals, Res. Vet. Sci. 7:190–195 (1966).Google Scholar
  32. 32.
    M. Katz and H. Koprowski, Failure to demonstrate a relationship between scrapie and production of interferon in mice, Nature (Lond.) 219:639–640 (1968).Google Scholar
  33. 33.
    E. J. Field, G. Joyce, and A. Keith, Failure of interferon to modify scrapie in the mouse, J. Gen. Virol. 5:149–150(1969).Google Scholar
  34. 34.
    A. Bignami and H. B. Parry, Aggregations of 35 nanometer particles associated with neuronal cytopathic changes in natural scrapie, Science (Wash. D.C.) 171:389–390 (1971).Google Scholar
  35. 35.
    H. K. Narang, B. Shenton, P. P. Giorgi, and E. J. Field, Scrapie agent in neurones, Nature (Lond.) 240:106–107 (1972).Google Scholar
  36. 36.
    H. K. Narang, Virus-like particles in natural scrapie of the sheep, Res. Vet. Sci. 14:108–110 (1973).Google Scholar
  37. 37.
    E. A. Caspary and T. M. Bell, Growth potential of scrapie mouse brain in vitro, Nature (Lond.) 229:269–270 (1971).Google Scholar
  38. 38.
    M. C. Clarke and D. A. Haig, Multiplication of scrapie agent in cell culture, Res. Vet. Sci. 11:500–501 (1970).Google Scholar
  39. 39.
    T. Alper, D. A. Haig, and M. C. Clarke, The exceptionally small size of the scrapie agent, Biochem. Biophys. Res. Commun. 22:278–284 (1966).Google Scholar
  40. 40.
    C. J. Gibbs, Jr., Search for infectious etiology in chronic and subacute degenerative diseases of the central nervous system, Curr. Top. Microbiol. Immunol. 40:44–58 (1967).Google Scholar
  41. 41.
    R. H. Kimberlin, G. C. Millson, and G. D. Hunter, An experimental examination of the scrapie agent in cell membrane mixtures. III. Studies of the operational size, J. Comp. Pathol. 81:383–391 (1971).Google Scholar
  42. 42.
    R. Latarjet, B. Muel, D. A. Haig, M. C. Clarke, and T. Alper, Inactivation of the scrapie agent by near monochromatic light, Nature (Lond.) 227:1341–1343 (1970).Google Scholar
  43. 43.
    D. A. Haig and M. C. Clarke, The effect of oeta-propiolactone on the scrapie agent, J. Gen. Virol. 3:281–283(1968).Google Scholar
  44. 44.
    I. H. Pattison, Resistance of scrapie to formalin, J. Comp. Pathol. 75:159–164 (1965).Google Scholar
  45. 45.
    G. D. Hunter, R. A. Gibbons, R. H. Kimberlin, and G. C. Millson, Further studies of the infectivity and stability of extracts and homogenates derived from scrapie affected mouse brains, J. Comp. Pathol. 79:101–108 (1969).Google Scholar
  46. 46.
    G. D. Hunter, R. H. Kimberlin, G. C. Millson, and R. A. Gibbons, An experimental examination of the scrapie agent in cell membrane mixtures. I. Stability and physicochemical properties of the scrapie agent, J. Comp. Pathol. 81:23–32 (1971).Google Scholar
  47. 47.
    D. H. Adams, E. J. Field, and G. Joyce, Periodate — An inhibitor of the scrapie agent?, Res. Vet. Sci. 13:195–198(1972).Google Scholar
  48. 48.
    E. J. Field, Slow virus infections of the nervous system, Int. Rev. Exp. Pathol. 8:129–239 (1969).Google Scholar
  49. 49.
    G. D. Hunter, R. H. Kimberlin, and R. A. Gibbons, Scrapie: A modified membrane hypothesis, J. Theor. Biol. 20:355–357 (1968).Google Scholar
  50. 50.
    G. C. Millson, G. D. Hunter, and R. H. Kimberlin, An experimental examination of the scrapie agent in cell membrane mixtures. II. The association of scrapie activity with membrane fractions, J. Comp. Pathol. 81:255–265 (1971).Google Scholar
  51. 51.
    A. G. Dickinson and V. M. H. Meikle, A comparison of some biological characteristics of the mouse-passaged scrapie agents, 22A and ME7, Genet. Res. 13:213–225 (1969).Google Scholar
  52. 52.
    T. O. Diener, Is the scrapie agent a viroid?, Nat. New Biol. 235:218–219 (1972).Google Scholar
  53. 53.
    D. L. Mould and W. Smith, The causal agent of scrapie. I. Extraction of the agent from infected sheep tissue, J. Comp. Pathol. 72:97–105 (1962).Google Scholar
  54. 54.
    I. Zlotnik and J. C. Rennie, Experimental transmission of mouse passaged scrapie to goats, sheep, rats, and hamsters, J. Comp. Pathol. 75:147–157 (1965).Google Scholar
  55. 55.
    R. L. Chandler, Experimental transmission of scrapie to voles and Chinese hamsters, Lancet 1:232–233 (1971).Google Scholar
  56. 56.
    C. J. Gibbs, Jr., and D. C. Gajdusek, Characterization and nature of viruses causing subacute spongiform encephalopathies, Sixth International Congress of Neuropathology, Paris, Masson et al., pp. 779-817 (1970).Google Scholar
  57. 57.
    R. P. Hanson, R. J. Eckroade, R. F. Marsh, G. M. Zu Rhein, C. L. Kanitz, and D. P. Gustafson, Susceptibility of mink to sheep scrapie, Science (Wash. D.C.) 172:859–861 (1971).Google Scholar
  58. 58.
    C. J. Gibbs, Jr., and D. C. Gajdusek, Transmission of scrapie to the cynomologous monkey (Macaca fascicularis), Nature (Lond.) 236:73–74 (1972).Google Scholar
  59. 59.
    A. G. Dickinson, G. B. Young, J. T. Stamp, and C. C. Renwick, An analysis of natural scrapie in Suffolk sheep, Heredity 20:485–503 (1965).Google Scholar
  60. 60.
    J. G. Brotherston, C. C. Renwick, J. T. Stamp, I. Zlotnik, and I. H. Pattison, Spread of scrapie by contact to goats and sheep, J. Comp. Pathol. 78:9–17 (1968).Google Scholar
  61. 61.
    A. G. Dickinson, J. T. Stamp, and C. C. Renwick, Maternal and lateral transmission of scrapie in sheep, J. Comp. Pathol. 84:1–7, 1974.Google Scholar
  62. 62.
    A. G. Dickinson and J. T. Stamp, Experimental scrapie in Cheviots and Suffolk sheep, /. Comp. Pathol. 79:23–26 (1969).Google Scholar
  63. 63.
    M. C. Clarke and D. A. Haig, An attempt to determine whether maternal transmission of scrapie occurs in mice, Br. Vet. J. 127:32–34 (1971).Google Scholar
  64. 64.
    I. Zlotnik, Spread of scrapie by contact in mice, J. Comp. Pathol. 78:19–22 (1968).Google Scholar
  65. 65.
    D. L. Mould, A. McL. Dawson, and W. Smith, Determination of the dosage-response curve of mice inoculated with scrapie, J. Comp. Pathol. 77:387–391 (1967).Google Scholar
  66. 66.
    A. G. Dickinson and V. M. H. Meikle, A comparison of some biological characteristics of the mouse-passaged scrapie agents, 22A and ME7, Genet. Res. 13:213–225 (1969).Google Scholar
  67. 67.
    A. G. Dickinson and V. M. H. Meikle, Host-genotype and agent effects in scrapie incubation: Change in allelic interaction with different strains of agent, Mol. Gen. Genet. 112:73–79 (1971).Google Scholar
  68. 68.
    A. G. Dickinson and H. Fraser, Modification of the pathogenesis of scrapie in mice by treatment of the agent, Nature (Lond.) 222:892–893 (1969).Google Scholar
  69. 69.
    A. G. Dickinson and G. W. Outram, Differences in access into the central nervous system of ME7 scrapie agent from two strains of mice, J. Comp. Pathol. 83:13–18 (1973).Google Scholar
  70. 70.
    P. C. Licursi, P. A. Merz, G. S. Merz, and R. I. Carp, Scrapie-induced changes in the percentage of polymorphonuclear neutrophils in mouse peripheral blood, Inject. Immun. 6:370–376 (1972).Google Scholar
  71. 71.
    R. I. Carp, P. A. Merz, P. C. Licursi, and G. S. Merz, Replication of the factor in scrapie material that causes a decrease in polymorphonuclear neutrophils, J. Inject. Dis. 128:256–258 (1973).Google Scholar
  72. 72.
    R. I. Carp, P. C. Licursi, P. A. Merz, and G. S. Merz, Decreased percentage of polymorphonuclear neutrophils in mouse peripheral blood after inoculation of material from multiple sclerosis patients, J. Exp. Med. 136:618–629 (1972).Google Scholar
  73. 73.
    H. B. Parry and B. G. Livett. A new hypothalamic pathway to the median eminence containing neurophysin and its hypertrophy in sheep with natural scrapie, Nature (Lond.) 242:63–65 (1973).Google Scholar
  74. 74.
    A. G. Dickinson, J. T. Stamp, C. C. Renwick, and J. C. Rennie, Some factors controlling the incidence of scrapie in Cheviot sheep injected with Cheviot-passaged scrapie agent, J. Comp. Pathol. 78:313–321 (1968).Google Scholar
  75. 75.
    I. H. Pattison and G. C. Millson, Scrapie produced experimentally in goats with special reference to the clinical syndrome, J. Comp. Pathol. 71:101–108 (1961).Google Scholar
  76. 76.
    A. G. Dickinson, V. M. H. Meikle, and H. Fraser, Identification of a gene which controls the incubation period of some strains of scrapie agent in mice, J. Comp. Pathol. 78:293–299 (1968).Google Scholar
  77. 77.
    A. G. Dickinson and H. Fraser, Genetical control of the concentration of ME7 scrapie agent in mouse spleen, J. Comp. Pathol. 79:363–366 (1969).Google Scholar
  78. 78.
    A. G. Dickinson, V. M. H. Meikle, and H. Fraser, Genetical control of the concentration of ME7 scrapie agent in the brain of mice, J. Comp. Pathol. 79:15–22 (1969).Google Scholar
  79. 79.
    A. G. Dickinson, H. Fraser, V. M. H. Meikle, and G. W. Outram, Competition between different scrapie agent in mice, Nat. New Biol. 237:244–245 (1972).Google Scholar
  80. 80.
    H. Fraser and A. G. Dickinson, The sequential development of the brain lesions of scrapie in three strains of mice, J. Comp. Pathol. 78:301–311 (1968).Google Scholar
  81. 81.
    H. Fraser and A. G. Dickinson, Scrapie in mice: Agent strain differences in the distribution and intensity of grey matter vacuolation, J. Comp. Pathol. 83:29–40 (1973).Google Scholar
  82. 82.
    G. W. Outram, H. Fraser, and D. T. Wilson, Scrapie in mice: Some effects on the brain lesion profile of ME7 agent due to genotype of donor, route of injection and genotype of recipient, J. Comp. Pathol. 83:19–28 (1973).Google Scholar
  83. 83.
    H. Fraser and M. Bruce, Argyrophilic plaques in mice inoculated with scrapie from particular sources, Lancet 1:617–618 (1973).Google Scholar
  84. 84.
    C. M. Eklund, R. C. Kennedy, and W. J. Hadlow, Pathogenesis of scrapie virus infection in the mouse, J. Infect. Dis. 117:15–22 (1967).Google Scholar
  85. 85.
    D. L. Mould, A. McL. Dawson, and J. C. Rennie, Very early replication of scrapie in lymphocytic tissue, Nature (Lond.) 228:779–780 (1970).Google Scholar
  86. 86.
    M. C. Clarke and D. A. Haig, Multiplication of scrapie agent in mouse spleen, Res. Vet. Sci. 12:195–197 (1971).Google Scholar
  87. 87.
    G. W. Outram, Early reduction of drinking in mice with scrapie, Lancet 1:397 (1971).Google Scholar
  88. 88.
    G. W. Outram, Changes in drinking and feeding habits of mice with experimental scrapie, J. Comp. Pathol. 82:415–427 (1972).Google Scholar
  89. 89.
    R. S. Heitzman and C. R. Corp, Behavior in emergence and open-field tests of normal and scrapie mice, Res. Vet. Sci. 9:600–601 (1968).Google Scholar
  90. 90.
    R. D. Savage and E. J. Field, Brain damage and emotional behavior: The effects of scrapie on the emotional responses of mice, Anim. Behav. 13:443–446 (1965).Google Scholar
  91. 91.
    P. A. Merz, G. S. Merz, and R. I. Carp, Higher frequency of a protein band in the cerebrospinal fluid from scrapie mice, Res. Vet. Sci. 14:392–393 (1973).Google Scholar
  92. 92.
    R. H. Kimberlin and G. D. Hunter, DNA synthesis in scrapie-affected mouse brain J. Gen. Virol. 1:115–124 (1967).Google Scholar
  93. 93.
    R. H. Kimberlin, G. C. Millson, and A. Mackenzie, Biochemical and histopathological changes in the brains of mice inoculated with scrapie by the intraperitoneal route, J. Comp. Pathol. 81:469–477 (1971).Google Scholar
  94. 94.
    R. H. Kimberlin, The nature of the increased rate of DNA synthesis in scrapie-affected mouse brain, J. Neurochem. 19:2767–2778 (1972).Google Scholar
  95. 95.
    P. P. Giorgi, E. J. Field, and G. Joyce, Metabolism of polyamines in normal and scrapie-affected mouse brain and spleen, J. Neurochem. 19:255–264 (1972).Google Scholar
  96. 96.
    I. H. Pattison and K. Smith, Histological observations on experimental scrapie in the mouse, Res. Vet. Sci. 4:269–275 (1963).Google Scholar
  97. 97.
    R. H. Kimberlin, Subacute spongiform encephalopathies in domestic and laboratory animals, Biochem. Soc. Trans. 1:38–41 (1973).Google Scholar
  98. 98.
    D. H. Adams, E. A. Caspary, and E. J. Field, The incorporation of [3 H]thymidine, [14 C]orotic acid, [14 C]uridine-diphospho-glucose and [14 C]glucosamine into a post-ribosomal fraction of normal and scrapie-affected mouse brain and spleen, J. Gen. Virol. 4:89–100 (1969).Google Scholar
  99. 99.
    D. H. Adams, E. A. Caspary, and E. J. Field, The incorporation of [3 H]thymidine and [14 C]glucosamine into a DNA-polysaccharide complex in normal and scrapie-affected mouse brain, Arch. Gesamte Virusforsch. 30:224–237 (1970).Google Scholar
  100. 100.
    D. H. Adams, Studies on DNA from normal and scrapie-affected mouse brain, J. Neurochem. 19:1869–1882 (1972).Google Scholar
  101. 101.
    H. Fraser and A. G. Dickinson, Pathogenesis of scrapie in the mouse: The role of the spleen, Nature (Lond.) 226:462–463 (1970).Google Scholar
  102. 102.
    A. G. Dickinson and H. Fraser, Scrapie: Effect of Dh gene on incubation period of extraneurally injected agent, Heredity 29:91–93 (1972).Google Scholar
  103. 103.
    G. W. Outram, A. G. Dickinson, and H. Fraser, Developmental maturation of susceptibility to scrapie in mice, Nature (Lond.) 241:536–537 (1973).Google Scholar
  104. 104.
    G. C. Lavelle, L. Sturman, and W. J. Hadlow, Isolation from mouse spleen of cell populations with high specific infectivity for scrapie virus, Infect. Immun. 5:319–323 (1972).Google Scholar
  105. 105.
    P. W. Lampert, D. C. Gajdusek, and C. J. Gibbs, Jr., Subacute spongiform encephalopathies, Am. J. Pathol. 68:626–646 (1972).Google Scholar
  106. 106.
    D. C. Gajdusek, Spongiform virus encephalopathies, J. Clin. Pathol. 25, Suppl. 6:78–83 (1972).Google Scholar
  107. 107.
    D. C. Gajdusek, C. J. Gibbs, Jr., and M. Alpers, Experimental transmission of a kuru-like syndrome to chimpanzees, Nature (Lond.) 209:794–796 (1966).Google Scholar
  108. 108.
    D. C. Gajdusek, C. J. Gibbs, Jr., and M. Alpers, Transmission and passage of experimental kuru to chimpanzees, Science (Wash. D.C.) 155:212–214 (1967).Google Scholar
  109. 109.
    D. C. Gajdusek and C. J. Gibbs, Jr., Transmission of two subacute spongiform encephalopathies of man (kuru and Creutzfeldt-Jakob disease) to New World monkeys, Nature (Lond.) 230:588–591 (1971).Google Scholar
  110. 110.
    C. J. Gibbs, Jr., and D. C. Gajdusek, Experimental subacute spongiform virus encephalopathies in primates and other laboratory animals, Science (Wash. D.C.) 182:67–68 (1973).Google Scholar
  111. 111.
    C. J. Gibbs, Jr., and D. C. Gajdusek, Isolation and characterization of the subacute spongiform virus encephalopathies of man: Kuru and Creutzfeldt-Jakob disease, J. Clin. Pathol. 25, Suppl. 6:84–96 (1972).Google Scholar
  112. 112.
    D. C. Gajdusek, C. J. Gibbs, Jr., N. G. Rogers, M. Basnight, and J. Hooks, Persistence of viruses of kuru and Creutzfeldt-Jakob: Disease in tissue cultures of brain cells, Nature (Lond.) 235:104–105 (1972).Google Scholar
  113. 113.
    C. J. Gibbs, Jr., D. C. Gajdusek, D. M. Asher, M. P. Alpers, E. Beck, P. M. Daniel, and W. B. Matthews, Creutzfeldt-Jakob disease (spongiform encephalopathy): Transmission to the chimpanzee, Science (Wash. D.C.) 161:388–389 (1968).Google Scholar
  114. 114.
    R. M. Barlow, Transmissible mink eneephalopathy: Pathogenesis and nature of the aetiological agent, J. Clin. Pathol. 25, Suppl. 6:102–109 (1972).Google Scholar
  115. 115.
    R. J. Eckroade, G. M. ZuRhein, R. F. Marsh, and R. P. Hanson, Transmissible mink eneephalopathy: Experimental transmission to the squirrel monkey, Science (Wash. D.C.) 169:1088–1090 (1970).Google Scholar
  116. 116.
    R. F. Marsh, D. Burger, and R. P. Hanson, Transmissible mink eneephalopathy: Behavior of the disease agent in mink, Am. J. Vet. Res. 30:1637–1642 (1969).Google Scholar
  117. 117.
    R. F. Marsh and R. P. Hanson, Physical and chemical properties of the transmissible mink eneephalopathy agent, J. Virol. 3:176–180 (1969).Google Scholar
  118. 118.
    R. F. Marsh, J. M. Miller, and R. P. Hanson, Transmissible mink encephalopathy: Studies on the peripheral lymphocyte, Inject. Immun. 7:352–355 (1973).Google Scholar
  119. 119.
    R. F. Marsh, D. Burger, R. Eckroade, G. M. ZuRhein, and R. P. Hanson, A preliminary report on the experimental host range of the transmissible mink encephalopathy agent, J. Inject. Dis. 120:713–719 (1969).Google Scholar
  120. 120.
    C. A. Cape, A. J. Martinez, J. T. Robertson, R. Hamilton, and J. T. Jabbour, Adult onset of subacute sclerosing panencephalitis, Arch. Neurol. 28:124–127 (1973).Google Scholar
  121. 121.
    A. Lowenthal, G. Moya, R. Poire, J. Macken, and R. De Smedt, Subacute sclerosing panencephalitis: A clinical and biological reappraisal, J. Neurol. Sci. 15:267–270 (1972).Google Scholar
  122. 122.
    J. T. Jabbour, D. A. Duenas, J. L. Sever, H. M. Krebs, and L. Horta-Barbosa, Epidemiology of subacute sclerosing panencephalitis (SSPE), J. Am. Med. Assoc. 220:959–962 (1972).Google Scholar
  123. 123.
    M. Bouteille, C. Fontaine, C. Vedrenne, and J. Delarue, Sur un cas d’encéphalite subbaigne à inclusions: Étude anatomo-clinique et ultra-structurale, Rev. Neurol. 118:454–458 (1965).Google Scholar
  124. 124.
    J. H. Connolly, I. V. Allen, L. J. Hurwitz, and J. H. D. Millar, Measles-virus antibody and antigen in subacute sclerosing panencephalitis, Lancet 1:542–544 (1967).Google Scholar
  125. 125.
    L. Horta-Barbosa, D. A. Fuccillo, J. L. Sever and W. Zeman, Subacute sclerosing panencephalitis: Isolation of measles virus from a brain biopsy, Nature (Lond.) 221:974 (1969).Google Scholar
  126. 126.
    J. V. Baublis and F. E. Payne, Measles antigen and syncytium formation in brain cell cultures from subacute sclerosing panencephalitis (SSPE), Proc. Soc. Exp. Biol. Med. 129:593–597 (1968).Google Scholar
  127. 127.
    V. ter Meulen, M. Katz, and D. Müller, Subacute sclerosing panencephalitis: A review, Curr. Top. Microbiol. Immunol. 57:1–38 (1972).Google Scholar
  128. 128.
    Y. Doi, T. Sanpe, M. Nakajima, S. Okawa, T. Katoh, H. Itoh, T. Sato, K. Oguchi, T. Kumanishi, and T. Tsubaki, Properties of a cytopathic agent isolated from a patient with subacute sclerosing panencephalitis in Japan, Jap. Med. Sci. Biol. 25:321–333 (1972).Google Scholar
  129. 129.
    H. Thormar, G. A. Jervis, S. C. Karl, and H. R. Brown, Passage in ferrets of encephalitogenic cell-associated measles virus isolated from brain of patient with subacute sclerosing panencephalitis, J. Inject. Dis. 127:678–685 (1973).Google Scholar
  130. 130.
    M. Katz and H. Koprowski, The significance of failure to isolate infectious viruses in cases of subacute sclerosing panencephalitis, Arch. Gesamte Virusjorsch. 41:390–393 (1973).Google Scholar
  131. 131.
    H. P. Schumacher, P. Albrecht, and N. M. Tauraso, Markers for measles virus. II. Tissue culture properties, Arch. Gesamte Virusjorsch. 36:296–310 (1972).Google Scholar
  132. 132.
    R. Hamilton, L. Barbosa, and M. Dubois, Subacute sclerosing panencephalitis measles virus: Study of biological markers, J. Virol. 12:632–642(1973).Google Scholar
  133. 133.
    P. Albrecht and H. P. Schumacher, Neurotropic properties of measles virus in hamsters and mice, J. Inject. Dis. 124:86–93 (1971).Google Scholar
  134. 134.
    L. Horta-Barbosa, D. A. Fucillo, R. Hamilton, R. Traub, A. Ley, and J. L. Sever, Some characteristics of SSPE in measles virus, Proc. Soc. Exp. Biol. Med. 134:17–21 (1970).Google Scholar
  135. 135.
    F. E. Payne and J. V. Baublis, Decreased reactivity of SSPE strains of measles virus with antibody, J. Inject. Dis. 127:505–511 (1973).Google Scholar
  136. 136.
    M. Katz, L. B. Rorke, W. S. Masland, H. Koprowski, and S. H. Tucker, Transmission of an encephalitogenic agent from brains of patients with subacute sclerosing panencephalitis to ferrets, N. Engl. J. Med. 279:793–798 (1968).Google Scholar
  137. 137.
    D. P. Byington and K. P. Johnson, Experimental subacute sclerosing panencephalitis in the hamster: Correlation of age with chronic inclusion-cell encephalitis, J. Inject. Dis. 126:18–26 (1972).Google Scholar
  138. 138.
    D. J. Wear and F. Rapp, Latent measles virus infection of the hamster central nervous system, J. Immunol. 107:1593–1598 (1971).Google Scholar
  139. 139.
    S. L. H. Notermans, W. F. J. Tijl, F. T. C. Willems, and J. L. Slooff, Experimentally induced subacute sclerosing panencephalitis in young dogs, Neurology 23:543–553 (1973).Google Scholar
  140. 140.
    P. Thein, A. Mayr, V. ter Meulen, H. Koprowski, M. Y. Kackell, D. Müller, and R. Meyermann, Subacute sclerosing panencephalitis, Arch. Neurol. 27:540–548 (1972).Google Scholar
  141. 141.
    S. D. Lincoln, J. R. Gorham, R. L. Ott, and G. A. Hegreberg, Etiologic studies of old dog encephalitis, Vet. Path. 8:1–8 (1971).Google Scholar
  142. 142.
    J. Furesz, Serologic diagnosis of measles in subacute sclerosing panencephalitis, N. Engl. J. Med. 284:729–730 (1971).Google Scholar
  143. 143.
    E. Norrby and Y. Gollmar, Appearance and persistence of antibodies against different virus components after regular measles infections, Infect. Immun. 6:240–247 (1972).Google Scholar
  144. 144.
    A. Salmi, E. Norrby, and M. Panelius, Identification of different measles virus-specific antibodies in the serum and cerebrospinal fluid from patients with subacute sclerosing panencephalitis and multiple sclerosis, Inject. Immun. 6:248–254 (1972).Google Scholar
  145. 145.
    J. H. Connolly, M. Haire, and D. S. M. Hadden, Measles immunoglobulins in subacute sclerosing panencephalitis, Br. Med. J. 1:23–25 (1971).Google Scholar
  146. 146.
    L. Horta-Barbosa, H. Krebs, A. Ley, T. Chen, M. R. Gilkeson, and J. L. Sever, Progressive increase in cerebrospinal fluid and measles antibody levels in subacute sclerosing panencephalitis, Pediatrics 47:782–783 (1971).Google Scholar
  147. 147.
    R. W. P. Cutler, G. V. Watters, J. P. Hammerstad, and E. Merler, Origin of cerebrospinal fluid gamma globulin in subacute sclerosing leukoencephalitis, Arch. Neurol. 17:620–628 (1967).Google Scholar
  148. 148.
    A. Lowenthal, M. van Sande, and D. Karcher, Serum gamma globulins in 84 typical cases of subacute sclerosing panencephalitis, Neurology 21:277–280 (1971).Google Scholar
  149. 149.
    H. Link, M. Panelius, and A. A. Salmi, Immunoglobulins and measles antibodies in subacute sclerosing panencephalitis, Arch. Neurol. 28:23–30 (1973).Google Scholar
  150. 150.
    B. Vandvik and E. Norrby, Oligoclonal IgG antibody response in the central nervous system to different measles virus antigens in subacute sclerosing panencephalitis, Proc. Nat. Acad. Sci. (USA) 70:1060–1063 (1973).Google Scholar
  151. 151.
    E. Haber, Antibodies of restricted heterogeneity for structural study, Fed. Proc. 29:66–71 (1970).Google Scholar
  152. 152.
    B. Vandvik and E. Reske-Nielsen, Immunochemical and immunohistochemical studies of brain tissue in subacute sclerosing panencephalitis and multiple sclerosis, Acta Neurol. Scand. Suppl. 48:413–416 (1972).Google Scholar
  153. 153.
    E. H. Jenis, M. R. Knieser, P. A. Rothouse, G. E. Jensen, and R. M. Scott, Subacute sclerosing panencephalitis, Immuno-ultrastructural localization of measles virus antigen, Arch. Pathol. 95:81–89 (1973).Google Scholar
  154. 154.
    V. ter Meulen, G. Enders-Ruckle, D. Müller, and G. Joppich, Immunohistological, microscopical and neurochemical studies on encephalitides, Acta Neuropathol. 12:244–259 (1969).Google Scholar
  155. 155.
    M. Saunders, M. Knowles, M. E. Chambers, E. A. Caspary, D. Gardner-Medwin, and P. Walker, Cellular and humoral responses to measles in subacute sclerosing panencephalitis, Lancet 1:72–74 (1969).Google Scholar
  156. 156.
    J. T. Jabbour, J. A. Roane, and J. L. Sever, Studies of delayed dermal hypersensitivity in patients with subacute sclerosing panencephalitis, Neurology 19:929–931 (1969).Google Scholar
  157. 157.
    K. L. Gerson and R. H. A. Haslam, Subtle immunologie abnormalities in four boys with subacute sclerosing panencephalitis, N. Engl. J. Med. 285:78–82 (1971).Google Scholar
  158. 158.
    A Klajman, M. Sternbach, L. Ranon, M. Drucker, D. Geminder, and N. Sadan, Impaired delayed hypersensitivity in subacute sclerosing panencephalitis, Acta Paediatr. Scand. 62:523–526 (1973).Google Scholar
  159. 159.
    K. W. Sell, G. B. Thurman, A. Ahmed, and D. M. Strong, Plasma and spinal-fluid blocking factor in SSPE, N. Engl. J. Med. 288:215–216 (1973).Google Scholar
  160. 160.
    J. Allen, J. Oppenheim, J. A. Brody, and J. Miller, Labile inhibitor of lymphocyte transformation in plasma from a patient with subacute sclerosing panencephalitis, Inject, Immun. 8:80–82 (1973).Google Scholar
  161. 161.
    L. T. Ch’ien, W. H. Wilborn, J. H. Carey, R. Ceballos, J. W. Benton, and C. A. Alford, The simultaneous occurrence of subacute sclerosing panencephalitis in two brothers. I. Clinical, virologie, and histo-pathologic studies, J. Infect. Dis. 125:123–128 (1972).Google Scholar
  162. 162.
    J. N. Whitaker, J. L. Sever, and W. K. Engel, Subacute sclerosing panencephalitis in only one of identical twins, N. Engl. J. Med. 287:864–866 (1972).Google Scholar
  163. 163.
    J. T. Jabbour and J. L. Sever, Serum measles antibody titers in patients with subacute sclerosing panencephalitis, compared with parents and siblings, J. Pediatr. 73:905–907 (1968).Google Scholar
  164. 164.
    J. A. Brody, R. Detels, and J. L. Sever, Measles-antibody titers in sibships of patients with subacute sclerosing panencephalitis and controls, Lancet 1:177–178 (1972).Google Scholar
  165. 165.
    F. M. Burnet, Measles as an index of immunological function, Lancet 2:500–501 (1968).Google Scholar
  166. 166.
    L. Horta-Barbosa, R. Hamilton, B. Wittig, D. A. Fuccillo, and J. L. Sever, Subacute sclerosing panencephalitis: Isolation of suppressed measles virus from lymph node biopsies, Science (Wash. D.C.) 173:840–841 (1971).Google Scholar
  167. 167.
    H. Koprowski, G. Barbanti-Brodano, and M. Katz, Interaction between papovalike virus and paramyxovirus in human brain cells: A hypothesis, Nature (Lond.) 225:1045–1047 (1970).Google Scholar
  168. 168.
    A. Notkins, S. Mergenhagen, and R. Howard, Effect of virus infections on the function of the immune system, Ann. Rev. Microbiol. 24:525–538 (1970).Google Scholar
  169. 169.
    D. M. Baguley and G. L. Glasgow, Subacute sclerosing panencephalitis and Salk vaccine, Lancet 2:763–765 (1973).Google Scholar
  170. 170.
    O. Pettay, M. Donner, H. Halonen, T. Pauosuo, and A. Salmi, Subacute sclerosing panencephalitis: Preceding intellectual deterioration and deviant measles serology, J. Inject. Dis. 124:439–444 (1971).Google Scholar
  171. 171.
    E. Pette, K. Mannweiler, and O. Palacios, Die Visnakrankheit der Schafe, Dtsch. Z. Nerven-heilkd. 182:635–651 (1961).Google Scholar
  172. 172.
    M. Gudnadóttir and K. Kristinsdóttir, Complement fixing antibodies in sera of sheep affected with visna and maedi, J. Immunol. 98:663–666 (1967).Google Scholar
  173. 173.
    M. Gudnadóttir and P. A. Pálsson, Host-virus interaction in visna infected sheep, J. Immunol. 95:1116–1120 (1966).Google Scholar
  174. 174.
    K. Astrom, E. Mancall, and E. Richardson, Jr., Progressive multifocal leukoencephalopathy: A hitherto unrecognized complication of chronic lymphatic leukaemia and Hodgkin’s disease, Brain 81:93–111 (1958).Google Scholar
  175. 175.
    L. P. Weiner, R. T. Johnson, and R. M. Herndon, Viral infections and demyelinating diseases, N. Engl. J. Med. 288:1103–1110 (1973).Google Scholar
  176. 176.
    G. M. ZuRhein and S. M. Chou, Particles resembling papova viruses in human cerebral demyelinating disease, Science (Wash. D.C.) 148:1477–1479 (1965).Google Scholar
  177. 177.
    B. L. Padgett, D. L. Walker, G. M. ZuRhein, and R. J. Eckroade, Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy, Lancet 1:1257–1260 (1971).Google Scholar
  178. 178.
    S. D. Gardner, A. M. Field, D. V. Coleman, and B. Hulme, New human papova-virus (B.K.) isolated from urine after renal transplantation, Lancet 1:1253–1257 (1971).Google Scholar
  179. 179.
    L. P. Weiner, R. M. Herndon, O. Narayan, R. T. Johnson, K. Shah, L. J. Rubinstein, T. V. Preziosi, and F. K. Conley, Isolation of virus related to SV40 from patients with progressive multifocal leukoencephalopathy, N. Engl. J. Med. 286:385–390 (1972).Google Scholar
  180. 180.
    G. Lecatsas, O. W. Prozesky, J. Van Wyk, and H. J. Els, Papova virus in urine after renal transplantation, Nature (Lond.) 241:343–344 (1973).Google Scholar
  181. 181.
    B. L. Padgett and D. L. Walker, Prevalence of antibodies in human sera against JC virus: An isolate from a case of progressive multifocal leukoencephalopathy, J. Inject. Dis. 127:467–470 (1973).Google Scholar
  182. 182.
    S. D. Gardner, Prevalence in England of antibody to human Polyomavirus (B.K.), Br. Med. J. 1:77–78(1973).Google Scholar
  183. 183.
    G. W. Ellison, Progressive multifocal leukoencephalopathy (PML). I. Investigation of the immunologic status of a patient with lymphosarcoma and PML, J. Neuropath. Exp. Neurol. 28:501–506 (1969).Google Scholar
  184. 184.
    C. F. Bolton and B. Rozdilsky, Primary progressive multifocal leukoencephalopathy: A case report, Neurology 21:72–77 (1971).Google Scholar
  185. 185.
    A. A. Faris and A. J. Martinez; Primary progressive multifocal leukoencephalopathy: A central nervous system disease caused by a slow virus, Arch. Neurol. 27:357–360 (1972).Google Scholar
  186. 186.
    W. Tourtellotte, On cerebrospinal fluid immunoglobulin-G (IgG) quotients in multiple scierosis and other diseases: A review and a new formula to estimate the amount of IgG synthesized per day by the central nervous system, J. Neurol. Sci. 10:279–304 (1970).Google Scholar
  187. 187.
    O. J. Kolar, A. T. Ross, and H. Gilliam, Serum IgG, IgA and IgM concentration in 1,038 patients with various neurological disorders, Z. Neurol. 203:133–144 (1972).Google Scholar
  188. 188.
    H. Link and R. Müller, Immunoglobulins in multiple sclerosis and infections of the nervous system, Arch. Neurol. 25:326–344 (1971).Google Scholar
  189. 189.
    B. Vandvik and S. Skrede, Electrophoretic examination of cerebrospinal fluid proteins in multiple sclerosis and other neurological diseases, Eur. Neurol. 9:224–241 (1973).Google Scholar
  190. 190.
    J. M. Adams and D. T. Imagawa, Measles antibodies in multiple sclerosis, Proc. Soc. Exp. Biol. Med. 111:562–566 (1962).Google Scholar
  191. 191.
    M. Panelius and A. Salmi, Association of measles antibody activity with electrophoretic fractions of CSF in a patient with multiple sclerosis, Acta Neurol. Scand. 49:266–268 (1973).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Richard I. Carp
    • 1
  • Halldor Thormar
    • 1
  1. 1.Departments of Microbiology and VirologyNew York State Institute for Research in Mental RetardationStaten IslandUSA

Personalised recommendations