Pathogenesis of Brain Dysfunction in Inborn Errors of Amino Acid Metabolism

  • Gerald E. Gaull
  • Harris H. Tallan
  • Abel Lajtha
  • David K. Rassin


It is now only four decades since Fölling’s original description of the condition he termed Imbecillitas phenylpyrouvica,(1) or phenylpyruvic oligophrenia, which was the first clear association of an inherited disorder of amino acid metabolism with brain dysfunction. The precise identification by Jervis of the enzymatic etiology, the deficiency of Phenylalanine 4-hydroxylase (EC,(2,3)1 waited two decades. In the subsequent two decades a large number of inherited disorders have been described, and in many cases the enzymatic etiology has been defined. So far, all of these disorders have involved defects in the pathways of degradation or in the conversion of one amino acid to another. In many, but not in all, the deficient enzyme is extracerebral—at least there has been no definite evidence of an intracerebral enzymatic defect. In parallel with this recent explosion of information on genetic etiology, there has been an explosion of information in neurobiology. However, information relating these two areas—i.e., how the enzymatic deficiency results in the brain disease—has not been clear-cut. Indeed, in no instance are we able to relate clearly the inherited enzymatic defect with the neurological deficit.


Tyrosine Hydroxylase Free Amino Acid Pyruvate Kinase Amino Acid Metabolism Inborn Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Fölling, Über Ausscheidung von Phenylbrenztraubensäure in den Harn als Stoffwechselanomalie in Verbindung mit Imbezillität, Z. Physiol. Chem. 227:169–176 (1934).Google Scholar
  2. 2.
    G. A. Jervis, Studies on phenylpyruvic oligophrenia. The position of the metabolic error, J. Biol. Chem. 169:651–656 (1947).Google Scholar
  3. 3.
    G. A. Jervis, Phenylpyruvic oligophrenia deficiency of phenylalanine-oxidizing system, Proc. Soc. Exp. Biol. Med. 82:514–515 (1953).Google Scholar
  4. 4.
    M. L. Efron, Aminoaciduria, N. Engl. J. Med. 272:1058–1067, 1107-1113 (1965).Google Scholar
  5. 5.
    W. L. Nyhan and P. Tocci, Aminoaciduria, Annu. Rev. Med. 17:133–160 (1966).Google Scholar
  6. 6.
    S. E. Snyderman, Metabolism, in “Mental Retardation” (J. Wortis, ed.) Vol. 1, pp. 178–196, Grune & Stratton, New York (1970).Google Scholar
  7. 7.
    G. W. Frimpter, Aminoacidurias due to inherited disorders of metabolism, N. Engl. J. Med. 289:835–841, 895-901 (1973).Google Scholar
  8. 8.
    D. P. Brenton, D. C. Cusworth, C. E. Dent, and E. E. Jones, Homocystinuria. Clinical and dietary studies, Q. J. Med. 35:325–346 (1966).Google Scholar
  9. 9.
    J. H. Anderson and K. F. Swaiman, eds., “Phenylketonuria and Allied Metabolic Diseases,” U.S. Department of Health, Education and Welfare, Washington (1967).Google Scholar
  10. 10.
    H. Bickel, F. P. Hudson, and L. I. Woolf, eds., “Phenylketonuria and Some Other Inborn Errors of Amino Acid Metabolism,” Georg Thieme Verlag, Stuttgart (1971).Google Scholar
  11. 11.
    S. Coates, A. P. Norman, and L. I. Woolf, Phenylketonuria with normal intelligence and Gowers’ muscular dystrophy, Arch. Dis. Child. 32:313–317 (1957).Google Scholar
  12. 12.
    D. Y.-Y. Hsia, W. E. Knox, and R. S. Paine, A case of phenylketonuria with borderline intelligence, Am. J. Dis. Child. 94:33–39 (1957).Google Scholar
  13. 13.
    H. Hansen, PKU screening of the newborn: Diagnostic outcomes among presumptive positives in New York City (in preparation).Google Scholar
  14. 14.
    R. Guthrie and A. Susi, A simple Phenylalanine method for detecting phenylketonuria in large populations of newborn infants, Pediatrics 32:338–343 (1963).Google Scholar
  15. 15.
    G. A. Jervis, Phenylpyruvic oligophrenia (phenylketonuria), Res. Publ. Assoc. Res. Nerv. Ment. Dis. 33:259–282 (1954).Google Scholar
  16. 16.
    H. Hansen, PKU screening of the newborn: mental prognosis in untreated PKU (in preparation).Google Scholar
  17. 17.
    J. L. Berman, G. C. Cunningham, R. W. Day, R. Ford, and D. Y.-Y. Hsia, Causes for high Phenylalanine with normal tyrosine in newborn screening programs, Am. J. Dis. Child. 117:54–65 (1969).Google Scholar
  18. 18.
    L. Hambraeus, G. Holmgren, and G. Samuelson, Dietary treatment of adult patients with phenylketonuria, Nutr. Metab. 13:298–317 (1971).Google Scholar
  19. 19.
    R. Fuller and J. Shuman, Treated phenylketonuria: Intelligence and blood Phenylalanine levels. Am. J. Ment. Defic. 75:539–545 (1971).Google Scholar
  20. 20.
    G. E. Gaull, Pathogenesis of maple-syrup-urine disease: Observations during dietary management and treatment of coma by peritoneal dialysis, Biochem. Med. 3:130–149 (1969).Google Scholar
  21. 21.
    G. E. Gaull and F. Schaffner, Electron microscopic changes in hepatocytes of patients with homocystinuria, Pediatr. Res. 5:23–32 (1971).Google Scholar
  22. 22.
    G. Gaull, J. A. Sturman, and F. Schaffner, Homocystinuria due to cystathionine synthase deficiency: Enzymatic and ultrastructural studies, J. Pediatr. 84:381–390 (1974).Google Scholar
  23. 23.
    J. J. Martin and W. Schlote, Neuropathological study of aminoacidurias, in “Aminoacidopathies, Immunoglobinopathies Neuro-Genetics and Neuro-Ophthalmology” (J. François, ed.) pp. 64–78, S. Karger, Basel (1972).Google Scholar
  24. 24.
    J.-J. Martin and W. Schlote, Central nervous system lesions in disorders of amino-acid metabolism: A neuropathological study. J. Neurol. Sci. 15:49–76 (1972).Google Scholar
  25. 25.
    L. C. Crome and J. Stern, “Pathology of Mental Retardation,” Churchill, London (1967).Google Scholar
  26. 26.
    R. Karrer and G. Cahilly, Experimental attempts to produce phenylketonuria in animals: A critical review, Psychol. Bull. 64:52–64 (1965).Google Scholar
  27. 27.
    M. A. Lipton, R. Gordon, G. Guroff, and S. Udenfriend, p-Chlorophenylalanine-induced chemical manifestations of phenylketonuria in rats, Science (Wash. D.C.) 156:248–250 (1967).Google Scholar
  28. 28.
    L. S. Adelman, J. D. Mann, D. W. Caley, and N. H. Bass, Neuronal lesions in the cerebellum following the administration of excess Phenylalanine to neonatal rats, J. Neuropathol. Exp. Neurol. 32:380–393 (1973).Google Scholar
  29. 29.
    R. C. Leaf, P. L. Carlton, and S. M. Hess, Behavioural deficit in the rat induced by feeding Phenylalanine, Nature (Lond.) 208:1021–1022 (1965).Google Scholar
  30. 30.
    S. M. Hess, E. C. Paulsen, S. A. Muller, and P. L. Carlton, A comparison of behavioral tests for measuring the effects of phenylketonuria in rats, Life Sci. 5:927–937 (1966).Google Scholar
  31. 31.
    V. J. Polidora, R. F. Cunningham, and H. A. Waisman, Dosage parameters of behavioral deficit associated with phenylketonuria in rats, J. Comp. Physiol. Psychol. 61:436–441 (1966).Google Scholar
  32. 32.
    C. M. McKean, S. M. Schanberg, and N. J. Giarman, Aminoacidemias: Effects on maze performance and cerebral serotonin, Science (Wash. D.C.) 157:213–215 (1967).Google Scholar
  33. 33.
    R. L. Schalock and F. D. Klopfer, Phenylketonuria: Enduring behavioral deficits in Phenylketonurie rats, Science (Wash. D.C.) 155:1033–1035 (1967).Google Scholar
  34. 34.
    R. L. Schalock and F. D. Klopfer, Induced phenylketonuria in rats: Behavioural effects, J. Ment. Defic. Res. 11:282–287 (1967).Google Scholar
  35. 35.
    A. S. Chamove and J. W. Davenport, Differential reinforcement of latency (DRL) in Phenylketonurie monkeys, Dev. Psychobiol. 2:207–211 (1970).Google Scholar
  36. 36.
    K. Hole, Arousal defect in l-Phenylalanine fed rats, Dev. Psychobiol. 5:149–156 (1972).Google Scholar
  37. 37.
    V. J. Perez, Phenylketonuria or phenylpyruvic oligophrenia in the rat: Behavioural and biochemical correlates, J. Ment. Defic. Res. 9:170–182 (1965).Google Scholar
  38. 38.
    V. J. Polidora, R. F. Cunningham, and H. A. Waisman, Phenylketonuria in rats: Reversibility of behavioral deficit, Science (Wash. D.C.) 151:219–221 (1966).Google Scholar
  39. 39.
    G. Rendina, M. F. Ryan, J. de Long, J. M. Tuttle, and C. E. Giles, Some biochemical consequences of feeding excesses of Phenylalanine to rats, J. Ment. Defic. Res. 11:153–168 (1967).Google Scholar
  40. 40.
    V. J. Polidora, Behavioral effects of “phenylketonuria” in rats, Proc. Natl. Acad. Sci. (USA) 57:102–106 (1967).Google Scholar
  41. 41.
    A. S. Chamove and H. F. Harlow, Avoidance learning in Phenylketonurie monkeys, J. Comp. Physiol. Psychol. 84:605–612 (1973).Google Scholar
  42. 42.
    A. S. Chamove, G. R. Kerr, and H. F. Harlow, Learning in monkeys fed elevated amino acid diets, J. Med. Prim. 2:223–235 (1973).Google Scholar
  43. 43.
    B. K. Koe and A. Weissman, p-Chlorophenylalanine: A specific depletor of brain serotonin, J. Pharmacol. Exp. Ther. 154:499–516 (1966).Google Scholar
  44. 44.
    S. S. Tenen, The effects of p-chlorophenylalanine, a serotonin depletor, on avoidance acquisition, pain sensitivity and related behavior in the rat, Psychopharmacologia 10:204–219 (1967).Google Scholar
  45. 45.
    K. Schlesinger, R. A. Schreiber, and G. T. Pryor, Effects of p-chlorophenylalanine on conditioned avoidance learning, Psychonomic Sci. 11:225–226 (1968).Google Scholar
  46. 46.
    D. A. Stevens, L. D. Fechter, and O. Resnick, The effects of p-chlorophenylalanine, a depletor of brain serotonin, on behavior. II. Retardation of passive avoidance learning, Life Sci. 8, Part II:379–385 (1969).Google Scholar
  47. 47.
    K. Hole, Behavior and brain growth in rats treated with p-chlorophenylalanine in the first weeks of life, Dev. Psychobiol. 5:157–173 (1972).Google Scholar
  48. 48.
    D. A. Stevens, O. Resnick, and D. M. Krus, The effects of p-chlorophenylalanine, a depletor of brain serotonin, on behavior. I. Facilitation of discrimination learning, Life Sci. 6:2215–2220 (1967).Google Scholar
  49. 49.
    D. D. Watt and P. R. Martin, Phenylalanine antimetabolite effect on development. I. Behavioral effects of D, l-4-chlorophenylalanine in the young rat, Life Sci. 8, Part 1:1211–1222 (1969).Google Scholar
  50. 50.
    R. L. Conner, J. M. Stolk, J. D. Barchas, and S. Levine, Parachlorophenylalanine and habituation to repetitive auditory startle stimuli in rats, Physiol. Behav. 5:1215–1219 (1970).Google Scholar
  51. 51.
    G. T. Pryor and C. Mitoma, Use p-chlorophenylalanine to induce a phenylketonuric-like condition in rats, Neuropharmacology 9:269–275 (1970).Google Scholar
  52. 52.
    M. M. Kilbey and R. T. Harris, Behavioral, biochemical and maturation effects of early dl-para-chlorophenylalanine treatment, Psychopharmacologia 19:334–346 (1971).Google Scholar
  53. 53.
    W. S. Schwark, R. L. Singhal, and G. M. Ling, Cerebro-cortical pyruvate kinase inhibition by l-Phenylalanine and p-chlorophenylalanine, Life Sci. 9, Part I:939–945 (1970).Google Scholar
  54. 54.
    J. W. Prichard and G. Guroff, Increased cerebral excitability caused by p-chlorophenylalanine in young rats, J. Neurochem. 18:153–160 (1971).Google Scholar
  55. 55.
    A. E. Andersen and G. Guroff, Enduring behavioral changes in rats with experimental phenylketonuria, Proc. Lull. Acad. Sci. (USA) 69:863–867 (1972).Google Scholar
  56. 56.
    A. E. Andersen, V. Rowe, and G. Guroff, The enduring behavioral changes in rats with experimental phenylketonuria, Proc. Natl. Acad. Sci. (USA) 71:21–25 (1974).Google Scholar
  57. 57.
    R. Butcher, C. Vorhees, and H. Berry, A learning impairment associated with induced phenylketonuria, Life Sci. 9, Part I:1261–1268 (1970).Google Scholar
  58. 58.
    C. V. Vorhees, R. E. Butcher, and H. K. Berry, Reduced activity in rats with induced phenylketonuria, Dev. Psychobiol. 5:175–179 (1972).Google Scholar
  59. 59.
    H. Hansen, Epidemiological considerations on maternal hyperphenylalaninemia, Am. J. Ment. Defic. 75:22–26 (1970).Google Scholar
  60. 60.
    H. Hansen, “Maternal Hyperphenylalaninemia. Present Status, Epidemiological Evaluation and Implications for Public Health,” Dr.P.H. Dissertation, Columbia University School of Public Health, New York (1973).Google Scholar
  61. 61.
    H. Hansen, Risk of fetal damage in maternal phenylketonuria, J. Pediatr. 83:506–507 (1973).Google Scholar
  62. 62.
    H. L. Levy and V. E. Shih, Maternal phenylketonuria and hyperphenylalaninemia. A prospective study, Pediatr. Res. 8:391 (1974).Google Scholar
  63. 63.
    D. E. Boggs and H. A. Waisman, Influence of excess dietary Phenylalanine on pregnant rats and their fetuses, Proc. Soc. Exp. Biol. Med. 115:407–410 (1964).Google Scholar
  64. 64.
    W. R. Thompson and K. Kano, Effects on rat offspring of maternal Phenylalanine diet during pregnancy, J. Psychiatr. Res. 3:91–98 (1965).Google Scholar
  65. 65.
    G. R. Kerr, A. S. Chamove, H. F. Harlow, and H. A. Waisman, “Fetal PKU”: The effect of maternal hyperphenylalaninemia during pregnancy in the Rhesus monkey (Macaca mulatto), Pediatrics 42:27–36 (1968).Google Scholar
  66. 66.
    V. R. Young, S. D. Alexis, B. S. Baliga, H. N. Munro, and W. Muecke, Metabolism of administered 3-methylhistidine: Lack of muscle tRNA charging and quantitative excretion as 3-methylhistidine and its N-acetyl derivative, J. Biol. Chem. 247:3592–3600 (1972).Google Scholar
  67. 67.
    R. E. Butcher, Learning impairment associated with maternal phenylketonuria in rats, Nature (Lond.) 226:555–556 (1970).Google Scholar
  68. 68.
    R. L. Schalock and J. H. Copenhaver, Behavioral effects of experimental maternal hyperphenylalaninemia, Dev. Psychobiol. 6:511–520 (1973).Google Scholar
  69. 69.
    H. H. Tallan, A survey of the amino acids and related compounds in nervous tissue, in “Amino Acid Pools” (J. T. Holden, ed.), pp. 471–485, Elsevier, Amsterdam (1962).Google Scholar
  70. 70.
    G. Levi, J. Kandera, and A. Lajtha, Control of cerebral metabolite levels. I. Amino acid uptake and levels in various species, Arch. Biochem. Biophys. 119:303–311 (1967).Google Scholar
  71. 71.
    W. A. Himwich and H. C. Agrawal, Amino acids, in “Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. 1, pp. 33–52, Plenum Press, New York (1969).Google Scholar
  72. 72.
    T. L. Perry, S. Hansen, K. Berry, C. Mok, and D. Lesk, Free amino acids and related compounds in biopsies of human brain, J. Neurochem. 18:521–528 (1971).Google Scholar
  73. 73.
    H. H. Tallan, S. Moore, and W. H. Stein, l-Cystathionine in human brain, J. Biol. Chem. 230:707–716 (1958).Google Scholar
  74. 74.
    D. P. Brenton, D. C. Cusworth, and G. E. Gaull, Homocystinuria — Biochemical studies of tissues including a comparison with cystathioninuria, Pediatrics 35:50–56 (1965).Google Scholar
  75. 75.
    J. A. Sturman, D. K. Rassin, and G. E. Gaull, Relation of three enzymes of transsulphura-tion to the concentration of cystathionine in various regions of monkey brain, J. Neurochem. 17:1117–1119 (1970).Google Scholar
  76. 76.
    J. Kandera, G. Levi, and A. Lajtha, Control of cerebral metabolite levels. II. Amino acid uptake and levels in various areas of the rat brain, Arch. Biochem. Biophys. 126:249–260 (1968).Google Scholar
  77. 77.
    J. M. Davis and W. A. Himwich, Amino acids and proteins of developing mammalian brain, in “Biochemistry of the Developing Brain” (W. Himwich, ed.) pp. 55–110, Marcel Dekker, New York (1973).Google Scholar
  78. 78.
    A. Lajtha and J. Toth, Perinatal changes in the free amino acid pool of the brain in mice, Brain Res. 55:238–241 (1973).Google Scholar
  79. 79.
    F. Piccoli, A. Grynbaum, and A. Lajtha, Developmental changes in Na+, K+ and ATP and in the levels and transport of amino acids in incubated slices of rat brain, J. Neurochem. 18:1135–1148 (1971).Google Scholar
  80. 80.
    S. Navon and A. Lajtha, The uptake of amino acids by particulate fractions from brain, Biochim. Biophys. Acta 173:518–531 (1969).Google Scholar
  81. 81.
    S. H. Snyder, A. B. Young, J. P. Bennett, and A. H. Mulder, Synaptic biochemistry of amino acids, Fed. Proc. 32:2039–2047 (1973).Google Scholar
  82. 82.
    D. K. Rassin, Amino acids as putative transmitters: Failure to bind to synaptic vesicles of guinea pig cerebral cortex, J. Neurochem. 19:139–148 (1972).Google Scholar
  83. 83.
    R. Balazs and J. E. Cremer, eds., “Metabolic Compartmentation in the Brain,” Macmillan Press Ltd., London (1973).Google Scholar
  84. 84.
    E. L. Nordyke and M. K. Roach, Effect of hyperphenylalaninemia on amino acid metabolism and compartmentation in neonatal rat brain, Brain Res. 67:479–488 (1974).Google Scholar
  85. 85.
    D. Garfinkle and A. Lajtha, A metabolic inhomogeneity of glycine in vivo. I. Experimental determination, J. Biol. Chem. 238:2429–2434 (1963).Google Scholar
  86. 86.
    D. S. Dunlop, W. van Elden, and A. Lajtha, Measurements of rates of protein synthesis in rat brain slices, J. Neurochem. 22:821–830 (1974).Google Scholar
  87. 87.
    A. Lajtha and D. Dunlop, Alterations of protein metabolism during development of the brain, in “Drugs and the Developing Brain” (A. Vernadakis and N. Weiner, eds.), pp. 215–229, Plenum Press, New York (1973).Google Scholar
  88. 88.
    T. L. Perry, K. Berry, S. Hansen, S. Diamond, and C. Mok, Regional distribution of amino acids in human brain obtained at autopsy, J. Neurochem. 18:513–519 (1971).Google Scholar
  89. 89.
    Y. Mardens, “Étude Analytique des Acides Aminés Libres et de Substances Apparentées dans le Systeme Nerveux Central Humain,” thesis, Free University of Brussels, Pharmaceutical Institute, Brussels (1972).Google Scholar
  90. 90.
    A. Lajtha and J. Toth, Postmortem changes in the cerebral free amino acid pool, Brain Res. 76:546–551 (1974).Google Scholar
  91. 91.
    K. Adriaenssens, R. J. Allen, A. Lowenthal, Y. Mardens, and W. W. Tourtellotte, Brain and cerebrospinal fluid free amino acids in phenylketonuria, J. Genet. Hum. 17:223–230 (1969).Google Scholar
  92. 92.
    C. M. McKean and N. A. Peterson, Glutamine in the Phenylketonuric central nervous system, N. Engl. J. Med. 283:1364–1367 (1970).Google Scholar
  93. 93.
    C. M. McKean, The effects of high Phenylalanine concentrations on serotonin and catecholamine metabolism in the human brain, Brain Res. 47:469–476 (1972).Google Scholar
  94. 94.
    Y. H. Loo and K. Mack, Effect of vitamin B. on Phenylalanine metabolism in the brain of normal and p-chlorophenylalanine-treated rats, J. Neurochem. 19:2385–2394 (1972).Google Scholar
  95. 95.
    D. J. Edwards and K. Blau, Aromatic acids derived from Phenylalanine in the tissues of rats with experimentally induced phenylketonuria-like characteristics, Biochem. J. 130:495–503 (1972).Google Scholar
  96. 96.
    D. J. Edwards and K. Blau, Phenethylamines in brain and liver of rats with experimentally induced phenylketonuria-like characteristics, Biochem. J. 132:95–100 (1973).Google Scholar
  97. 97.
    A. L. Miller, R. A. Hawkins, and R. L. Veech, Phenylketonuria: Phenylalanine inhibits brain pyruvate kinase in vivo, Science (Wash. D.C.) 179:904–906 (1973).Google Scholar
  98. 98.
    A. N. Davison, Nutrition and amino acid imbalance as factors influencing brain development, Biochem. Soc. Spec. Publ. 1:27–37 (1974).Google Scholar
  99. 99.
    J. M. Saavedra, Enzymatic isotopic assay for and presence of β-phenylethylamine in brain, J. Neurochem. 22:211–216 (1974).Google Scholar
  100. 100.
    J. M. Saavedra and J. Axelrod, Demonstration and distribution of phenylethanolamine in brain and other tissues, Proc. Natl. Acad. Sci. (USA) 70:769–772 (1973).Google Scholar
  101. 101.
    Y. H. Loo, Characterization of a new Phenylalanine metabolite in phenylketonuria, J. Neurochem. 14:813–821 (1967).Google Scholar
  102. 102.
    T. L. Perry and R. T. Jones, The amino acid content of human cerebrospinal fluid in normal individuals and in mental defectives, J. Clin. Invest. 40:1363–1372 (1961).Google Scholar
  103. 103.
    C. M. McKean and D. E. Boggs, Influence of high concentrations of Phenylalanine on the amino acids of cerebrospinal fluid and blood, Proc. Soc. Exp. Biol. Med. 122:987–991 (1966).Google Scholar
  104. 104.
    Y. Mardens, J. Dumon, F. Hayez, S. Vrydagh, A. Cools, and G. Myle, Observation de deux paires de jumeaux monozygotiques atteints de phényleétonurie, J. Genet, Hum. 16:42–77 (1967).Google Scholar
  105. 105.
    M. van Sande, Y. Mardens, K. Adriaenssens, and A. Lowenthal, The free amino acids in human cerebrospinal fluid, J. Neurochem. 17:125–135 (1970).Google Scholar
  106. 106.
    C.-D. Quentin, A. W. Behbehani, F. J. Schulte, and V. Neuhoff, Microanalysis with 14C-dansyl chloride of amino acids and amines in the cerebrospinal fluid of patients with phenylketonuria. I. Analysis in untreated phenylketonuria, Neuropädiatrie 5:138–145 (1974).Google Scholar
  107. 107.
    C.-D. Quentin, A. W. Behbehani, F. J. Schulte, and V. Neuhoff, Microanalysis with 14C-dansyl chloride of amino acids and amines in the cerebrospinal fluid of patients with phenylketonuria. III. Analysis of amino acids after loading with l-Phenylalanine, Neuropädiatrie 5:271–278 (1974).Google Scholar
  108. 108.
    T. L. Perry, S. Hansen, B. Tischler, R. Bunting, and S. Diamond, Glutamine depletion in phenylketonuria. A possible cause of the mental defect, N. Engl. J. Med. 282:761–766 (1970).Google Scholar
  109. 109.
    P. W. K. Wong, J. L. Berman, M. W. Partington, S. K. Vickery, M. E. O’Flynn, and D. Y.-Y. Hsia, Glutamine in PKU, N. Engl. J. Med. 285:580 (1971).Google Scholar
  110. 110.
    D. R. Lines and H. A. Waisman, Urinary amino acid excretion in Phenylketonuric, hyperphenylalaninemic, and normal patients, J. Pediatr. 78:474–480 (1971).Google Scholar
  111. 111.
    J. P. Colombo, Plasma glutamine in a Phenylketonurie family with normal and mentally defective members, Arch. Dis. Child. 46:720–721 (1971).Google Scholar
  112. 112.
    R. Blasberg and A. Lajtha, Heterogeneity of the mediated transport systems of amino acid uptake in brain, Brain Res. 1:86–104 (1966).Google Scholar
  113. 113.
    A. Neidle, J. Kandera, and M. Chedekel, Amino acid efflux and protein turnover in mouse brain slices, Fed. Proc. 29:911 Abs (1970).Google Scholar
  114. 114.
    T. M. Andrews, R. O. McKeran, R. W. E. Watts, K. McPherson, and R. Lax, A relationship between the granulocyte Phenylalanine content and the degree of disability in phenylketonuria, Q. J. Med. 42:805–817 (1973).Google Scholar
  115. 115.
    A. L. Prensky and H. W. Moser, Brain lipids, proteolipids, and free amino acids in maple syrup urine disease, J. Neurochem. 13:863–874 (1966).Google Scholar
  116. 116.
    P. M. Dreyfus and A. L. Prensky, Further observations on the biochemical lesion in maple syrup urine disease, Nature (Lond.) 214:276 (1967).Google Scholar
  117. 117.
    S. E. Snyderman, P. M. Norton, E. Roitman, and L. E. Holt, Jr., Maple syrup urine disease, with particular reference to dietotherapy, Pediatrics 34:454–472 (1964).Google Scholar
  118. 118.
    T. Gerritsen and H. A. Waisman, Homocystinuria: Absence of cystathionine in the brain, Science (Wash. D.C.) 145:588 (1964).Google Scholar
  119. 119.
    G. de la Haba and G. L. Cantoni, The enzymatic synthesis of S-adenosyl-l-homocysteine from adenosine and homocysteine, J. Biol. Chem. 234:603–608 (1959).Google Scholar
  120. 120.
    S. H. Mudd, H. L. Levy, and R. H. Abeles, A derangement in B12 metabolism leading to homocystinemia, cystathioninemia and methylmalonic aciduria, Biochem. Biophys. Res. Commun. 35:121–126 (1969).Google Scholar
  121. 121.
    H. L. Levy, S. H. Mudd, J. D. Schulman, P. M. Dreyfus, and R. H. Abeles, A derangement in B12 metabolism associated with homocystinemia, cystathioninemia, hypomethioninemia and methylmalonic aciduria, Am. J. Med. 48:390–397 (1970).Google Scholar
  122. 122.
    S. H. Mudd, H. L. Levy, and G. Morrow III, Deranged B12 metabolism: Effects on sulfur amino acid metabolism, Biochem. Med. 4:193–214 (1970).Google Scholar
  123. 123.
    T. L. Perry, D. F. Hardwick, G. H. Dixon, C. L. Dolman, and S. Hansen, Hypermethioninemia: A metabolic disordei associated with cirrhosis, islet cell hyperplasia, and renal tubular degeneration, Pediatrics 36:236–250 (1965).Google Scholar
  124. 124.
    K. D. Neame, Transport, metabolism and pharmacology of amino acids in brain, in “Applied Neurochemistry” (A. N. Davison and J. Dobbing, eds.), pp. 119–177, Blackwell Scientific Publications, Oxford (1968).Google Scholar
  125. 125.
    J. P. Bennett, Jr., W. J. Logan, and S. H. Snyder, Amino acids as central nervous transmitters: The influence of ions, amino acid analogues, and ontogeny on transport systems for l-glutamic and l-aspartic acids and glycine into central nervous synaptosomes of the rat, J. Neurochem. 21:1533–1550 (1973).Google Scholar
  126. 126.
    L. K. Kaczmarek and A. N. Davison, Uptake and release of taurine from rat brain slices, J. Neurochem. 19:2355–2362 (1972).Google Scholar
  127. 127.
    G. C. Honegger, L. Krepelka, M. Steiner, and H. P. von Hahn, Kinetics and subcellular distribution of 35S-taurine uptake into rat cerebral cortex, Experientia 29:752 (1973).Google Scholar
  128. 128.
    V. J. Balcar and G. A. R. Johnston, Allylglycine, an inhibitor of the uptake of l-leucine and l-proline in rat brain slices, Biochem. Pharmacol. 23:821–827 (1974).Google Scholar
  129. 129.
    A. Lajtha and H. Sershen, Substrate specificity of uptake of diamines in mouse brain slices, Arch. Biochem. Biophys. 165:539–547 (1974).Google Scholar
  130. 130.
    A. Lajtha and P. Mela, The brain barrier system. I. The exchange of free amino acids between plasma and brain, J. Neurochem. 7:210–217 (1961).Google Scholar
  131. 131.
    G. Guroff and S. Udenfriend, Studies on aromatic amino acid uptake by rat brain in vivo, J. Biol. Chem. 237:803–806 (1962).Google Scholar
  132. 132.
    J. D. Fernstrom and R. J. Wurtman, Brain serotonin content: Physiological regulation by plasma neutral amino acids, Science (Wash. D.C.) 178:414–416 (1972).Google Scholar
  133. 133.
    L. Battistin, F. Piccoli, and A. Lajtha, Heteroexchange of amino acids in incubated slices of brain, Arch. Biochem. Biophys. 151:102–111 (1972).Google Scholar
  134. 134.
    A. Lajtha and J. Toth, The brain barrier system. II. Uptake and transport of amino acids by the brain, J. Neurochem. 8:216–225 (1961).Google Scholar
  135. 135.
    R. W. P. Cutler, J. E. Murray, and J. P. Hammerstad, Role of mediated transport in the electrically-induced release of [14C]glycine from slices of rat spinal cord, J. Neurochem. 19:539–542 (1972).Google Scholar
  136. 136.
    A. V. Lorenzo and S. R. Snodgrass, Leucine transport from the ventricles and the cranial subarachnoid space in the cat, J. Neurochem. 19:1287–1298 (1972).Google Scholar
  137. 137.
    G. Levi, R. Blasberg, and A. Lajtha, Substrate specificity cf cerebral amino acid exit in vitro, Arch. Biochem. Biophys. 114:339–351 (1966).Google Scholar
  138. 138.
    P. N. Abadom and P. G. Scholefield, Amino acid transport in brain cortex slices. I. The relation between energy production and the glucose-dependent transport of glycine, Can. J. Biochem. Physiol. 40:1575–1590 (1962).Google Scholar
  139. 139.
    M. Banay-Schwartz, L. Piro, and A. Lajtha, Relationships of ATP levels to amino acid transport in slices of mouse brain, Arch. Biochem. Biophys. 145:199–210 (1971).Google Scholar
  140. 140.
    M. Banay-Schwartz, D. Teller, A. Gergely, and A. Lajtha, The effects of metabolic inhibitors on amino acid uptake and the levels of ATP, Na+, and K+ in incubated slices of mouse brain, Brain Res. 71:117–131 (1974).Google Scholar
  141. 141.
    R. K. Margolis and A. Lajtha, Ion dependence of amino acid uptake in brain slices, Biochim. Biophys. Acta 163:374–385 (1968).Google Scholar
  142. 142.
    A. Lajtha and H. Sershen, Inhibition of amino acid uptake by the absence of Na+ in slices of brain, J. Neurochem. (1975) (in press).Google Scholar
  143. 143.
    A. Lajtha and H. Sershen, Changes in amino acid influx with Na+ flow in incubated slices of mouse brain, Brain Res. 84:429–441 (1975).Google Scholar
  144. 144.
    C. F. Baxter and C. L. Ortiz, Amino acids and the maintenance of osmotic equilibrium in brain tissue, Life Sci. 5:2321–2329 (1966).Google Scholar
  145. 145.
    H. C. Agrawal, A. H. Bone, and A. N. Davison, Effect of Phenylalanine on protein synthesis in the developing rat brain, Biochem. J. 117:325–331 (1970).Google Scholar
  146. 146.
    W. H. Oldendorf, Saturation of blood brain barrier transport of amino acids in phenylketonuria, Arch. Neurol. 28:45–48 (1973).Google Scholar
  147. 147.
    W. A. Himwich, A. R. Dravid, and T. J. C. Berk, Phenylalanine loading in the new-born puppy: Techniques, in “Regional Development of the Brain in Early Life” (A. Minkowski, ed.), pp. 221–242, Blackwell Scientific Publications, Oxford (1967).Google Scholar
  148. 148.
    R. G. Daniel and H. A. Waisman, The influence of excess methionine on the free amino acids of brain and liver of the weanling rat, J. Neurochem. 16:787–795 (1969).Google Scholar
  149. 149.
    S. Roberts, Influence of elevated circulating levels of amino acids on cerebral concentrations and utilization of amino acids, in “Brain Barrier Systems” (A. Lajtha and D. H. Ford, eds.), pp. 235–243, Elsevier, New York (1968).Google Scholar
  150. 150.
    M. J. Carver, Free amino acids of fetal brain. Influence of the branched chain amino acids, J. Neurochem. 16:113–116 (1969).Google Scholar
  151. 151.
    S. Roberts and B. S. Morelos, Regulation of cerebral metabolism of amino acids. IV. Influence of amino acid levels on leucine uptake, utilization and incorporation into proteins in vivo, J. Neurochem. 12:373–387 (1965).Google Scholar
  152. 152.
    L. Battistin, A. Grynbaum, and A. Lajtha, The uptake of various amino acids by the mouse brain in vivo, Brain Res. 29:85–99 (1971).Google Scholar
  153. 153.
    W. H. Oldendorf, Brain uptake of radiolabeled amino acids, amines, and hexoses after arterial injection, Am. J. Physiol. 221:1629–1639 (1971).Google Scholar
  154. 154.
    K. Seta, H. Sershen, and A. Lajtha, Cerebral amino acid uptake in vivo in newborn mice, Brain Res. 47:415–425 (1972).Google Scholar
  155. 155.
    S. Zamenhof, E. Van Marthens, and F. L. Margolis, DNA (cell number) and protein in neonatal brain: Alteration by maternal dietary protein restriction, Science (Wash. D.C.) 160:322–323(1968).Google Scholar
  156. 156.
    J. A. Lowden and M. A. LaRamée, Hyperphenylalaninemia: The effect of cerebral amino acid levels during development, Can. J. Biochem. 47:883–888 (1969).Google Scholar
  157. 157.
    R. Franchi-Gazzola, G. C. Gazzola, P. Ronchi, V. Saibene, and G. G. Guidotti, Regulation of amino acid transport in chick embryo heart cells. II. Adaptive control sites for the “A” mediation, Biochim. Biophys. Acta 291:545–556 (1973).Google Scholar
  158. 158.
    R. E. Kirsch, S. J. Saunders, and J. F. Brock, Amino acid transport in experimental proteincalorie malnutrition, Am. J. Clin. Nutr. 21:1302–1305 (1968).Google Scholar
  159. 159.
    S. Thier, M. Fox, S. Segal, and L. E. Rosenberg, Cystinuria: In vitro demonstration of an intestinal transport defect, Science (Wash. D.C.) 143:482–484 (1964).Google Scholar
  160. 160.
    C. E. Frohman, K. A. Warner, C. T. Barry, and R. E. Arthur, Amino acid transport and the plasma factor in schizophrenia, Biol. Psychiatr. 1:201–207 (1969).Google Scholar
  161. 161.
    C. E. Frohman, R. E. Arthur, H. S. Yoon, and J. S. Gottlieb, Distribution and mechanism of action of the anti-S protein in human brain, Biol. Psychiatr. 7:53–61 (1973).Google Scholar
  162. 162.
    A. E. Harper, N. J. Benevenga, and R. M. Wohlhueter, Effects of ingestion of disproportionate amounts of amino acids, Physiol. Rev. 50:428–558 (1970).Google Scholar
  163. 163.
    A. Lajtha and N. Marks, Protein turnover, in in “Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. 5, pp. 551–629, Plenum Press, New York (1971).Google Scholar
  164. 164.
    S. R. Cohen and A. Lajtha, Amino acid transport, in “Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. 7, pp. 543–572, Plenum Press, New York (1972).Google Scholar
  165. 165.
    M. Kiely and T. L. Sourkes, Transport of l-tryptophan into slices of rat cerebral cortex, J. Neurochem. 19:2863–2872 (1972).Google Scholar
  166. 166.
    M. Benuck and A. Lajtha, The effect of elevated amino acids on aminotransferase levels in brain and liver of the mouse, J. Neurochem. 23:553–559 (1974).Google Scholar
  167. 167.
    A. L. Prensky, S. Carr, and H. W. Moser, Development of myelin in inherited disorders of amino acid metabolism, Arch. Neurol. 19:552–558 (1968).Google Scholar
  168. 168.
    J. H. Menkes, Cerebral proteolipids in phenylketonuria, Neurology 18:1003–1008 (1968).Google Scholar
  169. 169.
    J. A. Lowden, J. T. R. Clarke, M. J. Stockwell, and M. A. La Ramée, Hyperphenylalaninemia and the developing rat brain, in in “Second International Meeting of the International Society for Neurochemistry” (R. Paoletti, R. Fumagalli, and C. Galli, eds.) pp. 274–275, Tamburini Editore, Milan (1969).Google Scholar
  170. Quoted by H. C. Agrawal and A. N. Davison, Myelination and amino acid imbalance in the developing brain, in in “Biochemistry of the Developing Brain” (W. Himwich, ed.) Vol. 1, pp. 143–186, Marcel Dekker, New York (1973).Google Scholar
  171. 170.
    H. P. Chase and D. O’Brien, Effect of excess Phenylalanine and of other amino acids on brain development in the infant rat, Pediatr. Res. 4:96–102 (1970).Google Scholar
  172. 171.
    A. L. Prensky, M. A. Fishman, and B. Daftari, Differential effects of hyperphenylalaninemia on the development of the brain in the rat, Brain Res. 33:181–191 (1971).Google Scholar
  173. 172.
    S. Castells, R. Zischka, and N. Addo, Alteration in composition of deoxyribonucleic acid, ribonucleic acid, proteins, and amino acids in brain of rats fed high and low Phenylalanine diets, Pediatr. Res. 5:329–334 (1971).Google Scholar
  174. 173.
    S. N. Shah, N. A. Peterson, and C. M. McKean, Impaired myelin formation in experimental hyperphenylalaninemia, J. Neurochem. 19:479–485(1972).Google Scholar
  175. 174.
    K. F. Swaiman, W. B. Hosfield, and B. Lemieux, Elevated plasma Phenylalanine concentration and lysine incorporation into ribosomal protein of developing brain, J. Neurochem. 15:687–690(1968).Google Scholar
  176. 175.
    G. S. Lo, S. Lee, N. L. Cruz, and J. B. Longenecker, Temporary induction of phenyl-ketonuria-like characteristics in infant rats: Effect on brain protein synthesis, Nutr. Rep. Internat. 2:59–72 (1970).Google Scholar
  177. 176.
    J. W. MacInnes and K. Schlesinger, Effects of excess Phenylalanine on in vitro and in vivo RNA and protein synthesis and polyribosome levels in brains of mice, Brain Res. 29:101–110 (1971).Google Scholar
  178. 177.
    C. Mitoma and S. E. LeValley, Transport and incorporation of labeled compounds in experimental Phenylketonuric rats, Proc. Soc. Exp. Biol. Med. 144:710–713 (1973).Google Scholar
  179. 178.
    R. I. Glazer and G. Weber, The effects of phenylpyruvate and hyperphenylalaninemia on incorporation of [6-3 H]glucose into macromolecules of slices of rat cerebral cortex, J. Neurochem. 18:2371–2382(1971).Google Scholar
  180. 179.
    S. H. Appel, Inhibition of brain protein synthesis: An approach to the biochemical basis of neurological dysfunction in the aminoacidurias, Trans. N.Y. Acad. Sci. 29:63–70 (1966).Google Scholar
  181. 180.
    Y. Takahashi and Y. Akabane, Protein metabolism of rat brain slices, Can. J. Biochem. Physiol. 38:1149–1157 (1960).Google Scholar
  182. 181.
    F. Orrego and F. Lipmann, Protein synthesis in brain slices. Effects of electrical stimulation and acidic amino acids, J. Biol. Chem. 242:665–671 (1967).Google Scholar
  183. 182.
    S. Roberts and C. E. Zomzely, Regulation of protein synthesis in the brain, in “Protides of the Biological Fluids. 13th Colloquium — 1965” (H. Peeters, ed.) pp. 91–102, Elsevier, Amsterdam (1966).Google Scholar
  184. 183.
    G. Takada and K. Tada, Incorporation of 14 C-leucine into brain protein in rats with hyperaminoacidemia, Tohoku J. Exp. Med. 102:103–111 (1970).Google Scholar
  185. 184.
    O. F. C. Lindroos and S. S. Oja, Hyperphenylalanemia and the exchange of tyrosine in adult rat brain, Exp. Brain Res. 14:48–60 (1971).Google Scholar
  186. 185.
    S. Roberts, Protein synthesis, in “Handbook of Neurochemistry” (A. Lajtha, ed.), Vol. 5, pp. 1–48, Plenum Press, New York (1971).Google Scholar
  187. 186.
    S. Roberts, Effects of amino acid imbalance on amino acid utilization, protein synthesis and polyribosome function in the cerebral cortex, in “Aromatic Amino Acids in the Brain. Ciba Foundation Symposium 22 (New Series),” pp. 299–318, Elsevier, Amsterdam (1974).Google Scholar
  188. 187.
    N. A. Peterson and C. M. McKean, The effects of individual amino acids on the incorporation of labelled amino acids into proteins by brain homogenates, J. Neurochem. 16:1211–1217(1969).Google Scholar
  189. 188.
    S. S. Oja, Incorporation of Phenylalanine, tyrosine and tryptophan into protein of homogenates from developing rat brain: Kinetics of incorporation and reciprocal inhibition, J. Neurochem. 19:2057–2069(1972).Google Scholar
  190. 189.
    C. Lamar, Jr. and B. Imm, Effect of specific amino acids on in vitro protein synthesizing system from rats, J. Nutr. 101:1589–1594 (1971).Google Scholar
  191. 190.
    F. L. Siegel, K. Aoki, and R. E. Colwell, Polyribosome disaggregation and cell-free protein synthesis in preparations from cerebral cortex of hyperphenylalaninemic rats, J. Neurochem. 18:537–547 (1971).Google Scholar
  192. 191.
    H. S. Barra, J. A. Rodriguez, C. A. Arce, and R. Caputto, A soluble preparation from rat brain that incorporates into its own proteins [14 C]arginine by a ribonuclease-sensitive system and [14 C]tyrosine by a ribonuclease-insensitive system, J. Neurochem. 20:97–108 (1973).Google Scholar
  193. 192.
    H. S. Barra, C. A. Arce, J. A. Rodriguez, and R. Caputto, Incorporation of Phenylalanine as a single unit into rat brain protein: Reciprocal inhibition by Phenylalanine and tyrosine of their respective incorporations, J. Neurochem. 21:1241–1251 (1973).Google Scholar
  194. 193.
    A. H. Lehninger, “Biochemistry,” Worth Publishers, New York (1970).Google Scholar
  195. 194.
    K. Aoki and F. L. Siegel, Hyperphenylalaninemia: Disaggregation of brain polyribosomes in young rats, Science (Wash. D.C.) 168:129–130 (1970).Google Scholar
  196. 195.
    P. W. K. Wong, R. Fresco, and P. Justice, The effect of maternal amino acid imbalance on fetal cerebral polyribosomes, Metabolism 21:875–881 (1972).Google Scholar
  197. 196.
    P. W. K. Wong and P. Justice, Effect of amino acid imbalance on polyribosome profiles and protein synthesis in fetal cerebral cortex, in “Sphingolipids, Sphingolipidoses and Allied Disorders” (B. W. Volk and S. M. Aronson, eds.), pp. 163–174, Plenum Press, New York (1972).Google Scholar
  198. 197.
    N. Rudolph and J. J. Betheil, Protein synthesis in liver and brain microsomes isolated from rats fed a high Phenylalanine diet, J. Nutr. 100:21–29 (1970).Google Scholar
  199. 198.
    B. F. Weiss, R. J. Wurtman, and H. N. Munro, Disaggregation of brain polysomes by l-5-hydroxytryptophan: Mediation by serotonin, Life Sci. 13:411–416 (1973).Google Scholar
  200. 199.
    J. H. Copenhaver, J. P. Vacanti, and M. J. Carver, Experimental maternal hyperphenylalaninemia: Disaggregation of fetal brain ribosomes, J. Neurochem. 21:273–280 (1973).Google Scholar
  201. 200.
    J. F. Hartmann and R. A. Becker, Ultrastructural evidence against in vivo disaggregation of brain polyribosomes after administration of l-dopa or Phenylalanine, J. Neural Transm. 34:73–77 (1973).Google Scholar
  202. 201.
    H. N. Munro, L. Roel, and R. J. Wurtman, Inhibition of brain protein synthesis by doses of L-DOPA that disaggregate brain polyribosomes, J. Neural Transm. 34:321–323 (1973).Google Scholar
  203. 202.
    D. A. Pasquier, M. C. Coca, P. G. Bosque, and J. Carreres, Effects of hyperphenylalaninemia on the cerebral cortex at ultracellular levels, Experientia 29:63 (1973).Google Scholar
  204. 203.
    H. Sidransky, D. S. R. Sarma, M. Bongiorno, and E. Verney, Effect of dietary tryptophan on hepatic polyribosomes and protein synthesis in fasted mice, J. Biol. Chem. 243:1123–1132 (1968).Google Scholar
  205. 204.
    B. F. Weiss, H. N. Munro, and R. J. Wurtman, l-Dopa: Disaggregation of brain polysomes and elevation of brain tryptophan, Science (Wash. D.C.) 173:833–835 (1971).Google Scholar
  206. 205.
    B. F. Weiss, H. N. Munro, L. A. Ordonez, and R. J. Wurtman, Dopamine: Mediator of brain polysome disaggregation after L-dopa, Science (Wash. D.C.) 177:613–616 (1972).Google Scholar
  207. 206.
    L. Barbato, I. W. M. Barbato, and A. Hamanaka, The in vivo effect of high levels of Phenylalanine on lipids and RNA of the developing rabbit brain, Brain Res. 7:399–406 (1968).Google Scholar
  208. 207.
    G. Weber, R. I. Glazer, and R. A. Ross, Regulation of human and rat brain metabolism: Inhibitory action of Phenylalanine and phenylpyruvate on glycolysis, protein, lipid, DNA and RNA metabolism, Adv. Enzyme Regul. 8:13–36 (1970).Google Scholar
  209. 208.
    H. B. Bosmann, Inhibition of macromolecular synthesis in isolated mitochondria by Phenylalanine and tryptophan, Life Sci. 10, Part II:1047–1058 (1971).Google Scholar
  210. 209.
    S. H. Appel, Inhibition of brain protein synthesis, in “Protein Metabolism of the Nervous System” (A. Lajtha, ed.), pp. 621–630, Plenum Press, New York (1970).Google Scholar
  211. 210.
    D. S. Dunlop, W. van Elden, and A. Lajtha, A method for measuring brain protein synthesis rates in young and adult rats, J. Neurochem. 24:337–345 (1975).Google Scholar
  212. 211.
    A. Lajtha, D. Dunlop, and N. Marks, Rates of turnover of cerebral proteins, in “Intracellular Protein Catabolism” (H. Hanson and P. Bohley, eds.), Academy of Sciences of the German Democratic Republic. (in press).Google Scholar
  213. 212.
    R. Werman, A review — Criteria for identification of a central nervous system transmitter, Comp. Biochem. Physiol. 18:745–766(1966).Google Scholar
  214. 213.
    J. Dudel, Criteria for identification of transmitter substances, in “Structure and Function of Inhibitory Neuronal Mechanisms” (C. von Euler, S. Skoglund, and U. Söderburg, eds.), pp. 523–525, Pergamon Press, Oxford (1968).Google Scholar
  215. 214.
    J. W. Phillis, “The Pharmacology of Synapses,” pp. 6–7, Pergamon Press, Oxford (1970).Google Scholar
  216. 215.
    C. Hebb, CNS at the cellular level: Identity of transmitter agents, Annu. Rev. Physiol. 32:165–192(1970).Google Scholar
  217. 216.
    D. R. Curtis and J. C. Watkins, The excitation and depression of spinal neurones by structurally related amino acids, J. Neurochem. 6:117–141 (1960).Google Scholar
  218. 217.
    D. R. Curtis, The effects of drugs and amino acids upon neurons, in “Regional Neurochemistry: the Regional Chemistry, Physiology and Pharmacology of the Nervous System” (S. Kety and J. Elkes, eds.), pp. 403–422, Pergamon Press, Oxford (1960).Google Scholar
  219. 218.
    K. Krnjevic, Actions of drugs on single neurones in the cerebral cortex, Br. Med. Bull. 21:10–14(1965).Google Scholar
  220. 219.
    K. Krnjevic and S. Schwartz, The action of γ-aminobutyric acid on cortical neurones, Exp. Brain Res. 3:320–336 (1967).Google Scholar
  221. 220.
    H. H. Jasper and I. Koyama, Rate of release of amino acids from the cerebral cortex in the cat as affected by brainstem and thalamic stimulation, Can. J. Physiol. Pharmacol. 47:889–905 (1969).Google Scholar
  222. 221.
    J. M. Crawford, The effect upon mice of intraventricular injection of excitant and depressant amino acids, Biochem. Pharmacol. 12:1443–1444 (1963).Google Scholar
  223. 222.
    K. Krnjevic and V. P. Whittaker, Excitation and depression of cortical neurones by brain fractions released from micropipettes, J. Physiol. 179:298–322 (1965).Google Scholar
  224. 223.
    V. P. Whittaker, The subcellular distribution of amino acids in brain and its relation to a possible transmitter function for these compounds, in “Structure and Function of Inhibitory Neuronal Mechanisms” (C. von Euler, S. Skoglund and U. Söderburg, eds.), pp. 487–504, Pergamon Press, Oxford (1968).Google Scholar
  225. 224.
    D. R. Curtis and G. A. R. Johnston, Amino acid transmitters, in “Handbook of Neuro-chemistry” (A. Lajtha, ed.), Vol. 4, pp. 115–134, Plenum Press, New York (1970).Google Scholar
  226. 225.
    M. H. Aprison, R. P. Shank, R. A. Davidoff, and R. Werman, The distribution of glycine, a neurotransmitter suspect in the central nervous system of several vertebrate species, Life Sci. 7, Part I:583–590 (1968).Google Scholar
  227. 226.
    R. Werman, Amino acids as central neurotransmitters, in “Neurotransmitters” (I. J. Kopin, ed.), pp. 147–180, The Association for Research in Nervous and Mental Disease, Williams & Wilkins, Baltimore (1972).Google Scholar
  228. 227.
    D. R. Curtis, Bicuculline, GABA and central inhibition, Proc. Aust. Assoc. Neurol. 9:145–153(1973).Google Scholar
  229. 228.
    J. L. Johnson, Glutamic acid as a synaptic transmitter in the nervous system: A review, Brain Res. 37:1–19(1972).Google Scholar
  230. 229.
    W. Zieglgänsberger and E. A. Puil, Actions of glutamic acid on spinal neurones, Exp. Brain Res. 17:35–49 (1973).Google Scholar
  231. 230.
    R. Werman, R. A. Davidoff, and M. H. Aprison, The inhibitory action of cystathionine, Life Sci. 5:1431–1440(1966).Google Scholar
  232. 231.
    G. Bryson, Biogenic amines in normal and abnormal behavioral states, Clin. Chem. 17:5–26 (1971).Google Scholar
  233. 232.
    M. D. Milne, Pharmacology of amino acids, Clin. Pharmacol. Ther. 9:484–516 (1968).Google Scholar
  234. 233.
    T. L. Perry, S. Hansen, and M. Kloster, Huntington’s chorea: Deficiency of γ-aminobutyric acid in brain, N. Engl. J. Med. 288:337–342 (1973).Google Scholar
  235. 234.
    E. D. Bird, A. V. P. Mackay, C. N. Rayner, and L. L. Iversen, Reduced glutamic-acid-decarboxylase activity of postmortem brain in Huntington’s chorea, Lancet 1:1090–1092 (1973).Google Scholar
  236. 235.
    B. B. Gallagher, Amino acids and cerebral excitability, J. Neurochem. 16:701–706 (1969).Google Scholar
  237. 236.
    B. B. Gallagher, Relationship of Phenylalanine to seizure threshold during maturation, J. Neurochem. 17:373–380(1970).Google Scholar
  238. 237.
    C. M. McKean, D. E. Boggs, and N. A. Peterson, The influence of high Phenylalanine and tyrosine on the concentrations of essential amino acids in brain, J. Neurochem. 15:235–241 (1968).Google Scholar
  239. 238.
    D. K. Rassin and G. E. Gaull, Subcellular distribution of enzymes of transmethylation and transsulfuration in rat brain, J. Neurochem. 24 (1975) (in press).Google Scholar
  240. 239.
    S. H. Mudd, J. D. Finkelstein, F. Irreverre, and L. Laster, Homocystinuria: An enzymatic defect, Science (Wash. D.C.) 143:1443–1445 (1964).Google Scholar
  241. 240.
    G. E. Gaull, D. K. Rassin, and J. A. Sturman, Enzymatic and metabolic studies of homocystinuria: Effects of pyridoxine, Neuropädiatrie 1:199–226 (1969).Google Scholar
  242. 241.
    R. J. Wurtman, C. M. Rose, S. Matthysse, J. Stephenson, and R. Baldessarini, l-Dihydroxyphenylalanine: Effect on S-adenosylmethionine in brain, Science (Wash. D.C.) 169:395–397 (1970).Google Scholar
  243. 242.
    S. Matthysse, J. Lipinski, and V. Shih, l-DOPA and S-adenosylmethionine Clin. Chim. Acta 35:253–254 (1971).Google Scholar
  244. 243.
    Y. P. Liu, L. M. Ambani, and M. H. Van Woert, l-Dihydroxyphenylalanine: Effect on levels of amino acids in rat brain, J. Neurochem. 19:2237–2239 (1972).Google Scholar
  245. 244.
    G. C. Cotzias, P. S. Papavasiliou, A. Steck, and S. Düby, Parkinsonism and levodopa, Clin. Pharmacol. Ther. 12:319–322(1971).Google Scholar
  246. 245.
    L. A. Ordonez and R. J. Wurtman, Methylation of exogenous 3,4-dihydroxyphenylalanine (l-DOPA) — Effects on methyl group metabolism, Biochem. Pharmacol. 22:134–137 (1973).Google Scholar
  247. 246.
    L. A. Ordonez and R. J. Wurtman, Folic acid deficiency and methyl group metabolism in rat brain: Effects of l-DOPA, Arch. Biochem. Biophys. 160:372–376 (1974).Google Scholar
  248. 247.
    R. J. Baldessarini and M. Karobath, Effects of l-DOPA and l-3-O-methyl-DOPA on uptake of [3 H]-l-methionine by synaptosomes, Neuropharmacology 11:715–720 (1972).Google Scholar
  249. 248.
    J. K. Spaide, J. M. Davis, and H. E. Himwich, Plasma amino acids in schizophrenic patients with methionine or cysteine loading and a monoamine oxidase inhibitor, Am. J. Clin. Nutr. 24:1053–1059 (1971).Google Scholar
  250. 249.
    N. Narasimhachari, B. Heller, J. Spaide, L. Haskovec, M. Fujimori, K. Tabushi, and H. E. Himwich, Comparative behavioral and biochemical effects of tranylcypromine and cysteine on normal controls and schizophrenic patients, Life Sci. 9, Part I:1021–1032 (1970).Google Scholar
  251. 250.
    J. D. Finkelstein and S. H. Mudd, Trans-sulfuration in mammals: The methionine-sparing effect of cystine, J. Biol. Chem. 242:873–880 (1967).Google Scholar
  252. 251.
    G. A. Johnston, The intraspinal distribution of some depressant amino acids, J. Neurochem. 15:1013–1017(1968).Google Scholar
  253. 252.
    B. J. Key and R. P. White, Neuropharmacological comparison of cystathionine, cysteine, homoserine and alpha-ketobutyric acids in cats, Neuropharmacology 9:349–357 (1970).Google Scholar
  254. 253.
    S. Kashiwamata, Brain cystathionine synthase: Vitamin-B. requirement for its enzymic reaction and changes in enzymic activity during early development of rats, Brain Res. 30:185–192 (1971).Google Scholar
  255. 254.
    S. Kashiwamata, Subcellular localization of cystathionine synthase in rat brain, FEBS (Fed. Eur. Biochem. Soc.) Lett. 19:69–71 (1971).Google Scholar
  256. 255.
    J. A. Sturman, G. Gaull, N. C. R. Raiha, Absence of cystathionase in human fetal liver: Is cystine essential?, Science (Wash. D.C.) 169:74–76 (1970).Google Scholar
  257. 256.
    G. E. Gaull, N. C. R. Räihä, S. Saarikoski, and J. A. Sturman, Transfer of cyst(e)ine and methionine across the human placenta, Pediatr. Res. 7:908–913 (1973).Google Scholar
  258. 257.
    J. D. Finkelstein, Methionine metabolism in mammals, in “Inherited Disorders of Sulphur Metabolism” (N. A. J. Carson and D. N. Raine, eds.) pp. 1–13, Churchill Livingstone, London (1971).Google Scholar
  259. 258.
    G. E. Gaull, W. von Berg, N. C. R. Räihä, and J. A. Sturman, Development of methyltransferase activities of human fetal tissues, Pediatr. Res. 7:527–533 (1973).Google Scholar
  260. 259.
    J. W. Olney, O. L. Ho, and V. Rhee, Cytotoxic effects of acidic and sulphur containing amino acids on the infant mouse central nervous system, Exp. Brain Res. 14:61–76 (1971).Google Scholar
  261. 260.
    V. J. Balcar and G. A. R. Johnston, Glutamate uptake by brain slices and its relation to the depolarization of neurones by acidic amino acids, J. Neurobiol. 3:295–301 (1972).Google Scholar
  262. 261.
    V. J. Balcar and G. A. R. Johnston, The structural specificity of the high affinity uptake of l-glutamate and l-aspartate by rat brain slices, J. Neurochem. 19:2657–2666 (1972).Google Scholar
  263. 262.
    B. Bergeret and F. Chatagner, Sur la présence d’acide cystéinesulfinique dans le cerveau du rat normal, Biochim. Biophys. Acta 14:297 (1954).Google Scholar
  264. 263.
    K. Yamaguchi, S. Sakakibara, J. Asamizu, and I. Ueda, Induction and activation of cysteine oxidase of rat liver. II. The measurement of cysteine metabolism in vivo and the activation of in vivo activity of cysteine oxidase, Biochim. Biophys. Acta 297:48–59 (1973).Google Scholar
  265. 264.
    J. G. Jacobsen and L. H. Smith, Jr., Biochemistry and physiology of taurine and taurine derivatives, Physiol. Rev. 48:424–511 (1968).Google Scholar
  266. 265.
    A. N. Davison and L. K. Kaczmarek, Taurine — A possible neurotransmitter?, Nature (Lond.) 234:107–108 (1971).Google Scholar
  267. 266.
    H. C. Agrawal, A. N. Davison, and L. K. Kaczmarek, Subcellular distribution of taurine and cysteinesulphinate decarboxylase in developing rat brain, Biochem. J. 122:759–763 (1971).Google Scholar
  268. 267.
    P. Lähdesmäki and S. S. Oja, Effect of electrical stimulation on the influx and efflux of taurine in brain slices of newborn and adult rats, Exp. Brain Res. 15:430–438 (1972).Google Scholar
  269. 268.
    W. O. Read and J. D. Welty, Effect of taurine on epinephrine and digoxin induced irregularities of the dog heart, J. Pharmacol. Exp. Ther. 139:283–289 (1963).Google Scholar
  270. 269.
    J. D. Welty and W. O. Read, Studies on some cardiac effects of taurine, J. Pharmacol. Exp. Ther. 144:110–115(1964).Google Scholar
  271. 270.
    J. Dietrich and J. Diacono, Comparison between ouabain and taurine effects on isolated rat and guinea-pig hearts in low calcium medium, Life Sci. 10, Part I:499–507 (1971).Google Scholar
  272. 271.
    A. Guidotti, G. Badiani, and A. Giotti, Potentiation by taurine of inotropic effect of strophanthin-K on guinea-pig isolated auricles, Pharmacol. Res. Commun. 3:29–38 (1971).Google Scholar
  273. 272.
    H. Pasantes-Morales, J. Klethi, P. F. Urban, and P. Mandel, The physiological role of taurine in retina: Uptake and effect on electroretinogram (ERG), Physiol. Chem. Phys. 4:339–348 (1972).Google Scholar
  274. 273.
    H. Pasantes-Morales, P. F. Urban, J. Klethi, and P. Mandel, Light stimulated release of [35 S]taurine from chicken retina, Brain Res. 51:375–378 (1973).Google Scholar
  275. 274.
    M. S. Starr and M. J. Voaden, The uptake, metabolism and release of 14 C-taurine by rat retina in vitro, Vision Res. 12:1261–1269 (1972).Google Scholar
  276. 275.
    N. M. Van Gelder, A. L. Sherwin, and T. Rasmussen, Amino acid content of epileptogenic human brain: Focal versus surrounding regions, Brain Res. 40:385–393 (1972).Google Scholar
  277. 276.
    A. Barbeau and J. Donaldson, Taurine in epilepsy, Lancet 2:387 (1973).Google Scholar
  278. 277.
    A. Barbeau and J. Donaldson, Zinc, taurine and epilepsy, Arch. Neurol. 30:52–58 (1974).Google Scholar
  279. 278.
    N. M. Van Gelder, Antagonism by taurine of cobalt induced epilepsy in cat and mouse, Brain Res. 47:157–165 (1972).Google Scholar
  280. 279.
    G. Sgaragli and F. Pavan, Effects of amino acid compounds injected into cerebrospinal fluid spaces, on colonic temperature, arterial blood pressure and behaviour of the rat, Neuropharmacology 11:45–56 (1972).Google Scholar
  281. 280.
    H. L. Haas and L. Hösli, The depression of brain stem neurones by taurine and its interaction with strychnine and bicuculline, Brain Res. 52:399–402 (1973).Google Scholar
  282. 281.
    H. H. Tallan, Free amino acids in brain after administration of imipramine, chlorpromazine and other psychotropic drugs, in “Amino Acid Pools” (J. T. Holden, ed.), pp. 465–470, Elsevier, Amsterdam (1961).Google Scholar
  283. 282.
    E. Mussini and F. Marcucci, Free amino acids in brain after treatment with psychotropic drugs, in “Amino Acid Pools” (J. T. Holden, ed.), pp. 486–492, Elsevier, Amsterdam (1961).Google Scholar
  284. 283.
    W. A. Himwich and J. M. Davis, Brain amino acids as affected by acute and chronic administration of chlorpromazine, Biol. Psychiatr. 5:89–98 (1972).Google Scholar
  285. 284.
    J. L. Mangan and V. P. Whittaker, The distribution of free amino acids in subcellular fractions of guinea-pig brain, Biochem. J. 98:128–137 (1966).Google Scholar
  286. 285.
    J. S. DeBelleroche and H. F. Bradford, Amino acids in synaptic vesicles from mammalian cerebral cortex: A reappraisal, J. Neurochem. 21:441–451 (1973).Google Scholar
  287. 286.
    H. Weil-Malherbe, The concentration of adrenaline in human plasma and its relation to mental activity, J. Ment. Sci. 101:733–755 (1955).Google Scholar
  288. 287.
    H. L. Nadler and D. Y.-Y. Hsia, Epinephrine metabolism in phenylketonuria, Proc. Soc. Exp. Biol. Med. 107:721–723 (1961).Google Scholar
  289. 288.
    A. Cession-Fossion, R. Vandermeulen, P. Dodinval, and J.-M. Chantraine, Élimination urinaire de l’adrénaline, de la noradrénaline et de l’acide vanillyl-mandélique chez les enfants oligophrènes phénylpyruviques, Pathol. Biol. 14:1157–1159 (1966).Google Scholar
  290. 289.
    H.-C. Curtius, K. Baerlocher, and J. A. Völlmin, Pathogenesis of phenylketonuria: Inhibition of dopa and catecholamine synthesis in patients with phenylketonuria, Clin. Chim. Acta 42:235–239 (1972).Google Scholar
  291. 290.
    H. Green, S. M. Greenberg, R. W. Erickson, J. S. Sawyer, and T. Ellison, Effect of dietary Phenylalanine and tryptophan upon rat brain amine levels, J. Pharmacol. Exp. Ther. 136:174–178(1962).Google Scholar
  292. 291.
    R. J. Wurtman, F. Larin, S. Mostafapour, and J. D. Fernstrom, Brain catechol synthesis: Control by brain tyrosine concentration, Science (Wash. D.C.) 185:183–184 (1974).Google Scholar
  293. 292.
    W. J. Hartman, R. I. Akawie, and W. G. Clark, Competitive inhibition of 3,4-dihydroxyphenylalanine (Dopa) decarboxylase in vitro, J. Biol. Chem. 216:507–529 (1955).Google Scholar
  294. 293.
    J. H. Fellman, Inhibition of DOPA decarboxylase by aromatic acids associated with phenylpyruvic oligophrenia, Proc. Soc. Exp. Biol. Med. 93:413–414 (1956).Google Scholar
  295. 294.
    J. B. Boylen and J. H. Quastel, Effects of l-Phenylalanine and sodium phenylpyruvate on the formation of adrenaline from l-tyrosine in adrenal medulla in vitro, Biochem. J. 80:644–648 (1961).Google Scholar
  296. 295.
    A. N. Davison and M. Sandler, Inhibition of 5-hydroxytryptophan decarboxylase by Phenylalanine metabolites, Nature (Lond.) 181:186–187 (1958).Google Scholar
  297. 296.
    S. E. Smith, Uptake of 5-hydroxy[14 C]tryptophan by rat and dog brain slices, Br. J. Pharmacol. 20:178–189 (1963).Google Scholar
  298. 297.
    D. Y.-Y. Hsia, K. Nishimura, and Y. Brenchley, Mechanisms for the decrease of brain serotonin, Nature (Lond.) 200:578 (1963).Google Scholar
  299. 298.
    I. Huang and D. Y.-Y. Hsia, Studies on inhibition of 5-hydroxy tryptophan decarboxylase by Phenylalanine metabolites, Proc. Soc. Exp. Biol. Med. 112:81–84 (1963).Google Scholar
  300. 299.
    Y. H. Loo, Serotonin deficiency in experimental hyperphenylalaninemia, J. Neurochem. 23:139–147(1974).Google Scholar
  301. 300.
    T. Nagatsu, M. Levitt, and S. Udenfriend, Tyrosine hydroxylase. The initial step in norepinephrine biosynthesis, J. Biol. Chem. 239:2910–2917 (1964).Google Scholar
  302. 301.
    R. Kettler, G. Bartholini, and A. Pletscher, In vivo enhancement of tyrosine hydroxylation in rat striatum by tetrahydrobiopterin, Nature (Lond.) 249:476–478 (1974).Google Scholar
  303. 302.
    S. P. Bagchi and P. L. McGeer, Some properties of tyrosine hydroxylase from the caudate nucleus, Life Sci. 3:1195–1200 (1964).Google Scholar
  304. 303.
    M. Ikeda, M. Levitt, and S. Udenfriend, Hydroxylation of Phenylalanine by purified preparations of adrenal and brain tyrosine hydroxylase, Biochem. Biophys. Res. Commun. 18:482–488 (1965).Google Scholar
  305. 304.
    M. Ikeda, M. Levitt, and S. Udenfriend, Phenylalanine as substrate and inhibitor of tyrosine hydroxylase, Arch. Biochem. Biophys. 120:420–427 (1967).Google Scholar
  306. 305.
    S. P. Bagchi and E. P. Zarycki, Hydroxylation of Phenylalanine by various areas of brain in vitro, Biochem. Pharmacol. 21:584–589 (1971).Google Scholar
  307. 306.
    S. P. Bagchi and E. P. Zarycki, Formation of catecholamines from Phenylalanine in brain — Effects of chlorpromazine and Catron, Biochem. Pharmacol. 22:1353–1368 (1973).Google Scholar
  308. 307.
    S. P. Bagchi and E. P. Zarycki, In vivo formation of tyrosine from Phenylalanine in brain, Life Sci. 9, Part I:111–119 (1970).Google Scholar
  309. 308.
    M. Karobath and R. J. Baldessarini, Formation of catechol compounds from Phenylalanine and tyrosine with isolated nerve endings, Nat. New Biol. 236:206–208 (1972).Google Scholar
  310. 309.
    T. Nagatsu and K. Takeuchi, The effect of high Phenylalanine concentration on the formation of DOPA from Phenylalanine and tyrosine by tyrosine hydroxylase, Experientia 23:532–533 (1967).Google Scholar
  311. 310.
    J. T. Coyle, Tyrosine hydroxylase in rat brain — Cofactor requirements, regional and subcellular distribution, Biochem. Pharmacol. 21:1935–1944 (1972).Google Scholar
  312. 311.
    W. N. Poillon, Kinetic properties of brain tyrosine hydroxylase and its partial purification by affinity chromatography, Biochem. Biophys. Res. Commun. 44:64–70 (1971).Google Scholar
  313. 312.
    G. Guroff, W. King, and S. Udenfriend, The uptake of tyrosine by rat brain in vitro, J. Biol. Chem. 236:1773–1777 (1961).Google Scholar
  314. 313.
    N. J. Uretsky and L. L. Iversen, Effects of 6-hydroxydopamine on noradrenaline-containing neurons in the rat brain, Nature (Lond.) 221:557–559 (1969).Google Scholar
  315. 314.
    S. T. Mason and S. D. Iversen, Learning impairment in rats after 6-hydroxydopamine-induced depletion of brain catecholamines, Nature (Lond.) 248:697–698 (1974).Google Scholar
  316. 315.
    J. L. Howard, L. D. Grant, and G. R. Breese, Effects of intracisternal 6-hydroxydopamine treatment on acquisition and performance of rats in a double T-maze, J. Comp. Physiol. Psychol. 86:995–1007 (1974).Google Scholar
  317. 316.
    K. D. Evetts, N. J. Uretsky, L. L. Iversen, and S. D. Iversen, Effects of 6-hydroxydopamine on CNS catecholamines, spontaneous motor activity and amphetamine induced hyperactivity in rats, Nature (Lond.) 225:961–962 (1970).Google Scholar
  318. 317.
    M. A. Simmonds and N. J. Uretsky, Central effects of 6-hydroxydopamine on the body temperature of the rat, Br. J. Pharmacol. 40:630–638 (1970).Google Scholar
  319. 318.
    R. Laverty and K. M. Taylor, Effects of intraventricular 2,4,5-trihydroxyphenylethylamine (6-hydroxydopamine) on rat behaviour and brain catecholamine metabolism, Br. J. Pharmacol. 40:836–846 (1970).Google Scholar
  320. 319.
    L. Stein and C. D. Wise, Possible etiology of schizophrenia: Progressive damage to the noradrenergic reward system by 6-hydroxydopamine, Science (Wash. D.C.) 171:1032–1036 (1971).Google Scholar
  321. 320.
    G. R. Breese, J. L. Howard, and J. P. Leahy, Effect of 6-hydroxydopamine on electrical self Stimulation of the brain, Br. J. Pharmacol. 43:255–257 (1971).Google Scholar
  322. 321.
    L. Stein, Neurochemistry of reward and punishment: Some implications for the etiology of schizophrenia, J. Psychiatr. Res. 8:345–361 (1971).Google Scholar
  323. 322.
    L. Stein and C. D. Wise, Possible etiology of schizophrenia: Progressive damage to the noradrenergic reward system by endogenous 6-hydroxydopamine, in “Neurotransmitters” (I. J. Kopin, ed.), pp. 298–311, The Association for Research in Nervous and Mental Disease, Williams & Wilkins, Baltimore (1972).Google Scholar
  324. 323.
    M. D. Armstrong and K. S. Robinson, On the excretion of indole derivatives in phenylketonuria, Arch. Biochem. Biophys. 52:287–288 (1954).Google Scholar
  325. 324.
    V. Ferrari, F. Campagnari, and A. Guida, Oligofrenia fenilpiruvica: Nuovi reperti chimico-patologici, Minerva Med. 46-II:119–127 (1955).Google Scholar
  326. 325.
    C. M. B. Pare, M. Sandier, and R. S. Stacey, 5-Hydroxytryptamine deficiency in phenylketonuria, Lancet 1:551–553 (1957).Google Scholar
  327. 326.
    H. L. Nadler, J. L. Berman, and D. Y.-Y. Hsia, The nature of the disturbance of tryptophan metabolism in phenylketonuria, J. Pediatr. 67:710–711 (1965).Google Scholar
  328. 327.
    M. T. Yarbro and J. A. Anderson, l-Tryptophan metabolism in phenylketonuria, J. Pediatr. 68:895–904 (1966).Google Scholar
  329. 328.
    J. B. Jepson, Paper chromatography of urinary indoles, Lancet 2:1009–1011 (1955).Google Scholar
  330. 329.
    C. M. B. Pare, M. Sandler, and R. S. Stacey, Decreased 5-hydroxytryptophan decarboxylase activity in phenylketonuria, Lancet 2:1099–1101 (1958).Google Scholar
  331. 330.
    P. Mozziconacci, J. Tremolieres, C. Attal, F. Girard, R. Leluc, and J. Boisse, Essais therapeutiques dans la phenylcetonurie, Arc. Franc. Pediatr. 18:569–602 (1961).Google Scholar
  332. 331.
    K. Tada and S. P. Bessman, Studies on tryptophan metabolism in oligophrenia phenylpyruvica, Paediatr. Japon. 3:41–46 (1960).Google Scholar
  333. 332.
    J. A. Anderson, H. Bruhl, A. J. Michaels, and D. Doeden, Tryptophan oxidation in phenylketonuria, Pediatr. Res. 1:372–385 (1967).Google Scholar
  334. 333.
    A. Stachow, B. Bousquet, and C. Dreux, Variation du rapport tryptamine/acide indolylacetique urinaire dans divers cas pathologiques affectant le metabolisme du tryptophanne, Clin. Chim. Acta 50:329–335 (1974).Google Scholar
  335. 334.
    K. Schreier und H. Flaig, Über die Ausscheidung von Indolbrenztraubensäure im Urin von Gesunden und Patienten mit Föllingscher Krankheit, Klin. Wschr. 34:1213 (1956).Google Scholar
  336. 335.
    S. P. Bessman and K. Tada, Metabolism of tryptophan in phenylketonuria, Pediatrics 23:1004–1005(1959).Google Scholar
  337. 336.
    S. P. Bessman and K. Tada, Indicanuria in phenylketonuria, Metabolism 9:377–385 (1960).Google Scholar
  338. 337.
    H. P. Chase and R. E. Greenberg, Studies of tryptophan metabolism in phenylketonuria, J. Pediatr. 67:1046–1047 (1965).Google Scholar
  339. 338.
    D. Y. Mackenzie and L. I. Woolf, “Maple syrup urine disease.” An inborn error of the metabolism of valine, leucine, and isoleucine associated with gross mental deficiency, Br. Med. J. 1:90–91 (1959).Google Scholar
  340. 339.
    J. T. Ireland, Progress in the treatment of maple syrup urine disease. A report on the treatment of two cases, in “Biochemical Approaches to Mental Handicap in Childhood” (J. D. Allan and K. S. Holt, eds.) pp. 71–83, Williams & Wilkins, Baltimore (1965).Google Scholar
  341. 340.
    M. A. Voyce, J. N. Montgomery, L. Crome, J. Bowman, and J. T. Ireland, Maple syrup urine disease, J. Ment. Defic. Res. 11:231–238 (1967).Google Scholar
  342. 341.
    S. P. Bessman, Some biochemical lessons to be learned from phenylketonuria, J. Pediatr. 64:828–838 (1964).Google Scholar
  343. 342.
    Pham Huu-Trung, J. Boisse, C. Attal, C. Charpentier, H. Levy, and P. Mozziconacci, L’Epreuve de charge en tryptophanne chez l’enfant, Sem. Hôp. Paris 40:672–679 (1964).Google Scholar
  344. 343.
    P. Careddu, T. Apollonio, M. Giovannini, and L. Tenconi, Tryptophanstoffwechselveränderungen bei der Phenylketonurie, Helv. Paediatr. Acta 19:267–278 (1964).Google Scholar
  345. 344.
    T. L. Perry, Urinary excretion of amines in phenylketonuria and mongolism, Science (Wash. D.C.) 136:879–880 (1962).Google Scholar
  346. 345.
    C. Godin and G. Dolan, Tryptophan metabolism in normal and Phenylketonuric rats, Biochim. Biophys. Acta 130:535–537 (1966).Google Scholar
  347. 346.
    F. Linneweh, M. Ehrlich, E. H. Graul, and H. Hundeshagen, Über den Aminosäuren-Transport bei phenylketonurischer Oligophrenie, Klin. Wschr. 41:253–255 (1963).Google Scholar
  348. 347.
    J.-P. Farriaux and G. Fontaine, Étude de la concentration en Phenylalanine du liquide intestinal chez le sujet hyperphénylalaninémique, Pathol. Biol. 21:961–965 (1973).Google Scholar
  349. 348.
    J.-P. Farriaux, J.-P. Delhaye, and G. Fontaine, Etude de l’absorption intestinale des acides aminés chez le sujet phénylcétonurique par la méthode de perfusion intestinale continue, Pathol. Biol. 20:543–550 (1972).Google Scholar
  350. 349.
    R. A. Wapnir, R. L. Hawkins, and F. Lifshitz, Local and systemic effects of Phenylalanine on intestinal transport of tyrosine and tryptophan, Proc. Soc. Exp. Biol. Med. 140:661–666 (1972).Google Scholar
  351. 350.
    H. Berendes, J. A. Anderson, M. R. Ziegler, and D. Ruttenberg, Disturbance in tryptophane metabolism in phenylketonuria, Am. J. Dis. Child. 96:430 (1958).Google Scholar
  352. 351.
    C. M. B. Pare, M. Sandier, and R. S. Stacey, The relationship between decreased 5-hydroxyindole metabolism and mental defect in phenylketonuria, Arch. Dis. Child. 34:422–425 (1959).Google Scholar
  353. 352.
    R. C. Baldridge, L. Borofsky, H. Baird III, F. Reichle, and D. Bullock, Relationship of serum Phenylalanine levels and ability of phenylketonurics to hydroxylate tryptophan, Proc. Soc. Exp. Biol. Med. 100:529–531 (1959).Google Scholar
  354. 353.
    C. M. B. Pare, M. Sandler, and R. S. Stacey, 5-Hydroxyindoles in mental deficiency, J. Neurol. Neurosurg. Psychiatry 23:341–346 (1960).Google Scholar
  355. 354.
    T. L. Perry, S. Hansen, B. Tischler, and M. Hestrin, Defective 5-hydroxylation of tryptophan in phenylketonuria, Proc. Soc. Exp. Biol. Med. 115:118–123 (1964).Google Scholar
  356. 355.
    J. Costil, J. Galli, J. M. Richardet, and H. E. Brissaud, Elimination urinaire de l’acide 5-hydroxy-indolacétique. II. Chez l’enfant phénylcètonurique, effets de l’administration de 5-hydroxy-tryptophanne, Nouv, Presse Méd. 2:2118–2122 (1973).Google Scholar
  357. 356.
    F. A. Reichle, R. C. Baldridge, J. Dobbs, and M. Trompetter, Tryptophan metabolism in phenylketonurics, J. Am. Med. Assoc. 178:939–941 (1961).Google Scholar
  358. 357.
    V. H. Auerbach, A. M. DiGeorge, R. C. Baldridge, C. D. Tourtellotte, and M. P. Brigham, Histidinemia: A deficiency in histidase resulting in the urinary excretion of histidine and of imidazolepyruvic acid, J. Pediatr. 60:487–497 (1962).Google Scholar
  359. 358.
    E. Jéquier, Tryptophan hydroxylation in phenylketonuria, Advan. Pharmacol. 6, Part B:169–170 (1968).Google Scholar
  360. 359.
    A. Mangoni and P. Morselli, Effect of Phenylalanine on the urinary output of 5-hydroxyindoleacetic acid and xanthurenic acid, Internat. J. Neuropsychiatr. 3:91–93 (1967).Google Scholar
  361. 360.
    I. Huang, S. Tannenbaum, L. Blume, and D. Y.-Y. Hsia, Metabolism of 5-hydroxyindole compounds in experimentally produced Phenylketonuric rats, Proc. Soc. Exp. Biol. Med. 106:533–536(1961).Google Scholar
  362. 361.
    D. E. Boggs, D. McLay, M. Kappy, and H. A. Waisman, Excretion of indolyl acids in Phenylketonuric monkeys, Nature (Lond.) 200:76 (1963).Google Scholar
  363. 362.
    J. Tu and M. W. Partington, 5-Hydroxyindole levels in the blood and CSF in Down’s syndrome, phenylketonuria and severe mental retardation, Dev. Med. Child Neurol. 14:457–466 (1972).Google Scholar
  364. 363.
    A. W. Behbehani, C.-D. Quentin, F. J. Schulte, and V. Neuhoff, Microanalysis with 14 C-dansyl chloride of amino acids and amines in the cerebrospinal fluid of patients with phenylketonuria. II. Determination of 5-hydroxyindole derivatives after loading with L-phenylalanine, Neuropadiatrie 5:258–270 (1974).Google Scholar
  365. 364.
    A. Yuwiler and R. T. Louttit, Effects of Phenylalanine diet on brain serotonin in the rat, Science (Wash. D.C.) 134:831–832(1961).Google Scholar
  366. 365.
    H. L. Wang, V. H. Harwalkar, and H. A. Waisman, Effect of dietary Phenylalanine and tryptophan on brain serotonin, Arch. Biochem. Biophys. 96:181–184 (1962).Google Scholar
  367. 366.
    W. J. Culley, R. N. Saunders, E. T. Mertz, and D. H. Jolly, Effect of Phenylalanine and its metabolites on the brain serotonin level of the rat, Proc. Soc. Exp. Biol. Med. 111:444–446 (1962).Google Scholar
  368. 367.
    J. Renson, H. Weissbach, and S. Udenfriend, Hydroxylation of tryptophan by Phenylalanine hydroxylase, J. Biol. Chem. 237:2261–2264 (1962).Google Scholar
  369. 368.
    R. T. Louttit, Effect of Phenylalanine and isocarboxazid feeding on brain serotonin and learning behavior in the rat, J. Comp. Physiol. Psychol. 55:425–428 (1962).Google Scholar
  370. 369.
    D. E. Boggs, R. Rosenberg, and H. A. Waisman, Effects of Phenylalanine, phenylacetic acid, tyrosine and valine on brain and liver serotonin in rats, Proc. Soc. Exp. Biol. Med. 114:356–358(1963).Google Scholar
  371. 370.
    W. B. Quay, Effect of dietary Phenylalanine and tryptophan on pineal and hypothalamic serotonin levels, Proc. Soc. Exp. Biol. Med. 114:718–721 (1963).Google Scholar
  372. 371.
    D. E. Boggs and H. A. Waisman, Biochemical correlates in rats with phenylketonuria, Arch. Biochem. Biophys. 106:307–311 (1964).Google Scholar
  373. 372.
    T. L. Perry, G. M. Ling, S. Hansen, and L. MacDougall, Unimpaired learning ability of rats made artificially Phenylketonurie during fetal or neonatal life, Proc. Soc. Exp. Biol. Med. 119:282–287(1965).Google Scholar
  374. 373.
    A. Yuwiler, E. Geller, and G. G. Slater, On the mechanism of the brain serotonin depletion in experimental phenylketonuria, J. Biol. Chem. 240:1170–1174 (1965).Google Scholar
  375. 374.
    A. Yuwiler and E. Geller, Brain serotonin changes in Phenylalanine-fed rats: Synthesis storage and degradation, J. Neurochem. 16:999–1005 (1969).Google Scholar
  376. 375.
    A. Yuwiler and E. Geller, Serotonin depletion by dietary leucine, Nature (Lond.) 208:83–84 (1965).Google Scholar
  377. 376.
    E. Geller and A. Yuwiler, Brain amine decrease in leucine-fed rats, J. Neurochem. 14:725–731 (1967).Google Scholar
  378. 377.
    P. S. V. Ramanamurthy and S. G. Srikantia, Effects of leucine on brain serotonin, J. Neurochem. 17:27–32 (1970).Google Scholar
  379. 378.
    H. M. van Praag, Indoleamines and the central nervous system: A sounding of their clinical significance, Psychiatr. Neurol. Neurochir. 73:9–36 (1970).Google Scholar
  380. 379.
    W. M. Lovenberg, in A. Sjoerdsma, Serotonin now: Clinical implications of inhibiting its synthesis with Para-chlorophenylalanine, Ann. Int. Med. 73:608–610 (1970).Google Scholar
  381. 380.
    S. Schanberg and N. J. Giarman, Uptake of 5-hydroxytryptophan by rat brain, Biochim. Biophys. Acta 41:556–558 (1960).Google Scholar
  382. 381.
    S. M. Schanberg, A study of the transport of 5-hydroxytryptophan and 5-hydroxytryptamine (serotonin) into brain, J. Pharmacol. Exp. Ther. 139:191–200(1963).Google Scholar
  383. 382.
    C. M. McKean, S. M. Schanberg, and N. J. Giarman, A mechanism of the indole defect in experimental phenylketonuria, Science (Wash. D.C.) 137:604–605 (1962).Google Scholar
  384. 383.
    R. J. Schain, J. H. Copenhaver, and M. J. Carver, Inhibition by Phenylalanine of the entry of 5-hydroxytryptophan-1-C14 into cerebrospinal fluid, Proc. Soc. Exp. Biol. Med. 118:184–186(1965).Google Scholar
  385. 384.
    H. Green and J. L. Sawyer, Biochemical-pharmacological studies with 5-hydroxytryptophan, precursor of serotonin, in “Biogenic Amines” (Prog. Brain Res. 8) (H. E. Himwich and W. A. Himwich, eds.) pp. 150–167, Elsevier, Amsterdam (1964).Google Scholar
  386. 385.
    D. W. Woolley and T. van der Hoeven, Serotonin deficiency in infancy as a cause of a mental defect in experimental phenylketonuria, Internat. J. Neuropsychiatr. 1:529–544 (1965).Google Scholar
  387. 386.
    D. G. Grahame-Smith, The biosynthesis of 5-hydroxytryptamine in brain, Biochem. J. 105:351–360 (1967).Google Scholar
  388. 387.
    D. G. Grahame-Smith, Tryptophan hydroxylation in brain, Biochem. Biophys. Res. Commun. 16:586–592 (1964).Google Scholar
  389. 388.
    H. Green and J. L. Sawyer, Demonstration, characterization, and assay precedure of tryptophan hydroxylase in rat brain, Anal. Biochem. 15:53–64 (1966).Google Scholar
  390. 389.
    E. M. Gal, J. C. Armstrong, and B. Ginsberg, The nature of in vitro hydroxylation of l-tryptophan by brain tissue, J. Neurochem. 13:643–654 (1966).Google Scholar
  391. 390.
    A. Ichiyama, S. Nakamura, Y. Nishizuka, and O. Hayaishi, Tryptophan-5-hydroxylase in mammalian brain, Adv. Pharmacol. 6, Part A:5–17 (1968).Google Scholar
  392. 391.
    D. A. V. Peters, P. L. McGeer, and E. G. McGeer, The distribution of tryptophan hydroxylase in cat brain, J. Neurochem. 15:1431–1435 (1968).Google Scholar
  393. 392.
    E. Jéquier, W. Lovenberg, and A. Sjoerdsma, Tryptophan hydroxylase inhibition: The mechanism by which p-chlorophenylalanine depletes rat brain serotonin, Mol. Pharmacol. 3:274–278 (1967).Google Scholar
  394. 393.
    D. G. Grahame-Smith, Discussion of tryptophan hydroxylation in mammalian systems, Adv. Pharmacol. 6, Part A:37–42 (1968).Google Scholar
  395. 394.
    A. Ichiyama, S. Nakamura, Y. Nishizuka, and O. Hayaishi, Enzymatic studies on the biosynthesis of serotonin in mammalian brain, J. Biol. Chem. 245:1699–1709 (1970).Google Scholar
  396. 395.
    W. Lovenberg, E. Jequier, and A. Sjoerdsma, Tryptophan hydroxylation in mammalian systems, Adv. Pharmacol. 6, Part A:21–36 (1968).Google Scholar
  397. 396.
    E. Jequier, D. S. Robinson, W. Lovenberg, and A. Sjoerdsma, Further studies on tryptophan hydroxylase in rat brainstem and beef pineal, Biochem. Pharmacol. 18:1071–1081 (1969).Google Scholar
  398. 397.
    E. Barbosa, P. Joanny, and J. Corriol, Accumulation active du tryptophane dans le cortex cérébral isolé du rat, C. R. Soc. Biol. 164:345–350 (1970).Google Scholar
  399. 398.
    E. Barbosa, B. Herreros, and J. L. Ojeda, Amino acid accumulation by brain slices: Interactions among tryptophan, Phenylalanine and histidine, Experientia 27:1281–1282 (1971).Google Scholar
  400. 399.
    J. Perez-Cruet, A. Tagliamonte, P. Tagliamonte, and G. L. Gessa, Changes in brain serotonin metabolism associated with fasting and satiation in rats, Life Sci. 11, Part II:31–39 (1972).Google Scholar
  401. 400.
    J. D. Femstrom, F. Larin, and R. J. Wurtman, Correlations between brain tryptophan and plasma neutral amino acid levels following food consumption in rats, Life Sci. 13:517–524 (1973).Google Scholar
  402. 401.
    J. Pérez-Cruet, T. N. Chase, and D. L. Murphy, Dietary regulation of brain tryptophan metabolism by plasma ratio of free tryptophan and neutral amino acids in humans, Nature (Lond.) 248:693–695 (1974).Google Scholar
  403. 402.
    G. Biggio, F. Fadda, P. Fanni, A. Tagliamonte, and G. L. Gessa, Rapid depletion of serum tryptophan, brain tryptophan, serotonin and 5-hydroxyindoleacetic acid by a tryptophan-free diet, Life Sci. 14:1321–1329 (1974).Google Scholar
  404. 403.
    D. G. Grahame-Smith and A. G. Parfitt, Tryptophan transport across the synaptosomal membrane, J. Neurochem. 17:1339–1353 (1970).Google Scholar
  405. 404.
    A. J. Mandell, S. Knapp, and L. L. Hsu, Some factors in the regulation of central serotonergic synapses, Life Sci. 14:1–17 (1974).Google Scholar
  406. 405.
    D. A. V. Peters, Inhibition of brain tryptophan-5-hydroxylase by amino acids — The role of l-tryptophan uptake inhibition, Biochem. Pharmacol. 21:1051–1053 (1972).Google Scholar
  407. 406.
    M. Benuck, F. Stern, and A. Lajtha, Transamination of amino acids in homogenates of rat brain, J. Neurochem. 18:1555–1567 (1971).Google Scholar
  408. 407.
    G. J. Lees and N. Weiner, Transaminations between amino acids and keto acids elevated in phenylketonuria and maple syrup urine disease, J. Neurochem. 20:389–403 (1973).Google Scholar
  409. 408.
    P. A. Friedman, A. H. Kappelman, and S. Kaufman, Partial purification and characterization of tryptophan hydroxylase from rabbit hindbrain, J. Biol. Chem. 247:4165–4173 (1972).Google Scholar
  410. 409.
    E. M. Gál and F. C. Moses, Progress in purification of cerebral tryptophan-5-hydroxylase, Fed. Proc. 33:1587 (1974).Google Scholar
  411. 410.
    S. Knapp and A. J. Mandell, Parachlorophenylalanine — Its three phase sequence of interactions with the two forms of brain tryptophan hydroxylase, Life Sci. 11, Part I:761–771 (1972).Google Scholar
  412. 411.
    J. A. Harvey and E. M. Gál, Septal tryptophan-5-hydroxylase: Divergent response to raphe lesions and parachlorophenylalanine, Science (Wash. D.C.) 183:869–871 (1974).Google Scholar
  413. 412.
    A Ichiyama, S. Hori, Y. Mashimo, T. Nukiwa, and H. Makuuchi, The activation of bovine pineal tryptophan 5-monooxygenase, FEBS (Fed. Eur. Biochem. Soc.) Lett. 40:88–91 (1974).Google Scholar
  414. 413.
    B. H. Kirman and C. M. B. Pare, Amine-oxidase inhibitors as possible treatment for phenylketonuria, Lancet 1:117 (1961).Google Scholar
  415. 414.
    T. L. Perry and B. Tischler, 5-Hydroxytryptophan administration in phenylketonuria, Am. J. Dis. Child. 107:586–589 (1964).Google Scholar
  416. 415.
    H. E. Himwich, “Brain Metabolism and Cerebral Disorders,” pp. 210–211, Williams & Wilkins, Baltimore, (1951).Google Scholar
  417. 416.
    R. K. Howell and M. Lee, Influence of alpha-ketoacids on the respiration of brain in vitro, Proc. Soc. Exp. Biol. Med. 113:660–663 (1963).Google Scholar
  418. 417.
    K. F. Swaiman and J. M. Milstein, Oxidation of leucine, isoleucine and related ketoaeids in developing rabbit brain, J. Neurochem. 12:981–986 (1965).Google Scholar
  419. 418.
    T. Itoh, Effects of sodium phenylpyruvate on amino acid formation in brain, Can. J. Biochem. 43:835–840 (1965).Google Scholar
  420. 419.
    K. F. Swaiman and B. Lemieux, The effect of Phenylalanine and its metabolites on glucose utilization in developing brain, J. Neurochem. 16:385–388 (1969).Google Scholar
  421. 420.
    L. M. Barbato and I. M. Barbato, In vitro inhibition of brain metabolism during postnatal development by high levels of Phenylalanine and tryptophan, Brain Res. 13:569–578 (1969).Google Scholar
  422. 421.
    S. R. Korey, A possible mechanism in phenylpyruvic oligophrenia, in “Etiologic Factors in Mental Retardation — Report of the Twenty-third Ross Pediatrie Research Conference” (S. J. Onesti, Jr., W. O. Robertson, and J. E. Jeffries, eds.), pp. 34–38, Ross Laboratories, Columbus, Ohio (1957).Google Scholar
  423. 422.
    B. B. Gallagher, The effect of phenylpyruvate on oxidative-phosphorylation in brain mitochondria, J. Neurochem. 16:1071–1076(1969).Google Scholar
  424. 423.
    W. Lysiak, J. Stępinski, and S. Angielski, Inhibition of α-oxoglutarate and pyruvate oxidation by α-oxoderivatives of leucine and valine in rat tissues, Acta Biochim. Polon. 17:131–141 (1970).Google Scholar
  425. 424.
    J. B. Clark and J. M. Land, Differential effects of 2-oxo acids on pyruvate utilization and fatty acid synthesis in rat brain, Biochem. J. 140:25–29 (1974).Google Scholar
  426. 425.
    H. S. Maker and G. M. Lehrer, Carbohydrate chemistry of brain, in “Basic Neurochemistry” (R. W. Albers, G. J. Siegel, R. Katzman, and B. W. Agranoff, eds.), pp. 169–189, Little, Brown, Boston (1972).Google Scholar
  427. 426.
    G. Weber, Inhibition of human brain pyruvate kinase and hexokinase by Phenylalanine and phenylpyruvate: Possible relevance to Phenylketonuric brain damage, Proc. Natl. Acad. Sci. (USA) 63:1365–1369 (1969).Google Scholar
  428. 427.
    R. I. Glazer and G. Weber, The effects of l-Phenylalanine and phenylpyruvate on glycolysis in rat cerebral cortex, Brain Res. 33:439–450 (1971).Google Scholar
  429. 428.
    J. P. Blass, C. A. Lewis, and S. R. Frost, Phenylketonuria, maple-syrup-urine disease, and brain pyruvate metabolism, Clin. Res. 21:Abs 261 (1973).Google Scholar
  430. 429.
    W. S. Schwark, R. L. Singhal, and G. M. Ling, Metabolie control mechanisms in mammalian systems. Regulation of pyruvate kinase in the rat cerebral cortex, J. Neurochem. 18:123–134 (1971).Google Scholar
  431. 430.
    S. E. Granett and W. W. Wells, Energy metabolism in the brains of l-phenylalanine-treated chicks, J. Neurochem. 19:1089–1098 (1972).Google Scholar
  432. 431.
    T. Tanaka, Y. Harano, F. Sue, and H. Morimura, Crystallization, characterization and metabolic regulation of two types of pyruvate kinase isolated from rat tissues, J. Biochem. 62:71–91 (1967).Google Scholar
  433. 432.
    H. Carminatti, L. Jiménez de Asúa, B. Leiderman, and E. Rozengurt, Allosteric properties of skeletal muscle pyruvate kinase, J. Biol. Chem. 246:7284–7288 (1971).Google Scholar
  434. 433.
    R. Vijayvargiya, W. S. Schwark, and R. L. Singhal, Pyruvate kinase: Modulation by l-phenylalanine and l-alanine, Can. J. Biochem. 47:895–898 (1969).Google Scholar
  435. 434.
    H. P. Ting-Beall and W. W. Wells, Effect of calcium chelation by l-phenylalanine on (Na+ + K+)-stimulated ATPase of chick brain microsomes, FEBS (Fed. Eur. Biochem. Soc.) Lett. 16:352–354(1971).Google Scholar
  436. 435.
    R. Whittam, Active cation transport as a pace-maker of respiration, Nature (Lond.) 191:603–604(1961).Google Scholar
  437. 436.
    S. C. Specht and J. D. Robinson, Stimulation of the (Na+ + K+)-dependent adenosine triphosphatase by amino acids and phosphatidylserine: Chelation of trace metal inhibitors, Arch. Biochem. Biophys. 154:314–323 (1973).Google Scholar
  438. 437.
    S. Udenfriend, The primary enzymatic defect in phenylketonuria and how it may influence the central nervous system, in “Phenylketonuria and Allied Metabolie Diseases” (J. A. Anderson and K. F. Swaiman, eds.), pp. 1–8, U.S. Department of Health, Education, and Welfare, Washington (1967).Google Scholar
  439. 438.
    J. M. Land and J. B. Clark, Effect of phenylpyruvate on pyruvate dehydrogenase activity in rat brain mitochondria, Biochem. J. 134:539–544 (1973).Google Scholar
  440. 439.
    M. S. Patel, The effect of phenylpyruvate on pyruvate metabolism in rat brain, Biochem. J. 128:677–684(1972).Google Scholar
  441. 440.
    M. S. Patel, W. D. Grover, and V. H. Auerbach, Pyruvate metabolism by homogenates of human brain: Effects of phenylpyruvate and implications for the etiology of the mental retardation in phenylketonuria, J. Neurochem. 20:289–296 (1973).Google Scholar
  442. 441.
    M. S. Patel, V. H. Auerbach, W. D. Grover, and D. O. Wilbur, Effect of the branched-chain α-keto acids on pyruvate metabolism by homogenates of human brain, J. Neurochem. 20:1793–1796(1973).Google Scholar
  443. 442.
    J. A. Bowden and C. L. McArthur, III, Possible biochemical model for phenylketonuria, Nature (Lond.) 235:230 (1972).Google Scholar
  444. 443.
    J. P. Blass and C. A. Lewis, Kinetic properties of the partially purified pyruvate dehydrogenase complex of ox brain, Biochem. J. 131:31–37 (1973).Google Scholar
  445. 444.
    M. J. Carver, Effects of sodium phenylpyruvate on brain amino acids, Proc. Soc. Exp. Biol. Med. 110:171–173(1962).Google Scholar
  446. 445.
    R. Haavaldsen, Transamination of aromatic amino-acids in nervous tissue, Nature (Lond.) 196:577–578 (1962).Google Scholar
  447. 446.
    F. Fonnum, R. Haavaldsen, and O. Tangen, Transamination of aromatic amino acids in rat brain, J. Neurochem. 11:109–118 (1964).Google Scholar
  448. 447.
    J. A. Bowden, C. L. McArthur, III, and M. Fried, The inhibition of pyruvate decarboxylation in rat brain by α-ketoisocaproic acid, Biochem. Med. 5:101–108 (1971).Google Scholar
  449. 448.
    C. L. McArthur, III, and J. A. Bowden, Metabolic diseases and mental retardation. II. The comparative effects of α-ketoisocaproic acid inhibition of pyruvate decarboxylation in chick liver and brain, Internat. J. Biochem. 3:193–198 (1972).Google Scholar
  450. 449.
    J. A. Bowden, E. P. Brestel, W. T. Cope, C. L. McArthur, III, D. N. Westfall, and M. Fried, a-Ketoisocaproic acid inhibition of pyruvate and α-ketoglutarate oxidative decarboxylation in rat liver slices, Biochem. Med. 4:69–76 (1970).Google Scholar
  451. 450.
    D. H. Silberberg, Maple syrup urine disease metabolites studied in cerebellum cultures, J. Neurochem. 16:1141–1146(1969).Google Scholar
  452. 451.
    A. D. Patrick, Maple syrup urine disease, Arch. Dis. Child. 36:269–272 (1961).Google Scholar
  453. 452.
    W. Lysiak, M. Piehkowska-Vogel, A. Szutowicz, and S. Angielski, Inhibition of alanine and aspartate aminotransferases by α-oxoderivatives of the branched-chain amino acids, J. Neurochem. 22:77–83 (1974).Google Scholar
  454. 453.
    M. R. Sutnick, W. D. Grover, and M. S. Patel, Impairment of pyruvate metabolism in phenylketonuria, Pediatr. Res. 6:432 (1972).Google Scholar
  455. 454.
    I. J. Arinze and M. S. Patel, Inhibition by phenylpyruvate of gluconeogenesis in the isolated perfused rat liver, Biochemistry 12:4473–4479 (1973).Google Scholar
  456. 455.
    M. L. Efron, E. S. Kang, J. Visakorpi, and F. X. Fellers, Effect of elevated plasma Phenylalanine levels on other amino acids in Phenylketonuric and normal subjects, J. Pediatr. 74:399–405 (1969).Google Scholar
  457. 456.
    M. S. Patel, Maple syrup urine disease: Inhibition by branched-chain ketoacids of α-ketoglutarate dehydrogenase in developing rat and human brain, Fed. Proc. 33:705 (1974).Google Scholar
  458. 457.
    J. P. Susz, B. Haber, and E. Roberts, Purification and some properties of mouse brain l-glutamic decarboxylase, Biochemistry 5:2870–2877 (1966).Google Scholar
  459. 458.
    R. E. Tashian, Inhibition of brain glutamic acid decarboxylase by Phenylalanine, valine, and leucine derivatives: A suggestion concerning the etiology of the neurological defect in phenylketonuria and branched-chain ketonuria, Metabolism 10:393–402 (1961).Google Scholar
  460. 459.
    A. Hanson, Action of Phenylalanine metabolites on glutamic acid decarboxylase and γ-aminobutyric acid-α-ketoglutaric acid transaminase in brain, Acta Chem. Scand. 13:1366–1374(1959).Google Scholar
  461. 460.
    L. Crome, The morbid anatomy of phenylketonuria, in “Phenylketonuria and Some Other Inborn Errors of Amino Acid Metabolism” (H. Bickel, F. P. Hudson, and L. I. Woolf, eds.), pp. 126–131, Georg Thieme Verlag, Stuttgart (1971).Google Scholar
  462. 461.
    S. N. Shah, N. A. Peterson, and C. M. McKean, Lipid composition of human cerebral white matter and myelin in phenylketonuria, J. Neurochem. 19:2369–2376 (1972).Google Scholar
  463. 462.
    J. L. Foote, and R. J. Allen, and B. W. Agranoff, Fatty acids in esters and cerebrosides of human brain in phenylketonuria, J. Lipid Res. 6:518–524 (1965).Google Scholar
  464. 463.
    J. H. Menkes, M. Philippart, and R. E. Fiol, Cerebral lipids in maple syrup disease, J. Pediatr. 66:584–594 (1965).Google Scholar
  465. 464.
    J. H. Menkes, Cerebral lipids in phenylketonuria, Pediatrics 37:967–978 (1966).Google Scholar
  466. 465.
    D. O’Brien and F. A. Ibbot, Effect of prolonged Phenylalanine loading on the free aminoacid and lipid content of the infant monkey brain, Dev. Med. Child Neurol. 8:724–728 (1966).Google Scholar
  467. 466.
    R. L. Geison and H. A. Waisman, Effects of excess dietary Phenylalanine on composition of cerebral lipids, J. Neurochem. 17:469–474 (1970).Google Scholar
  468. 467.
    D. H. Silberberg, Phenylketonuria metabolites in cerebellum culture morphology, Arch. Neurol. 17:524–529 (1967).Google Scholar
  469. 468.
    L. Liss and H.-D. Griimer, Effect of l-phenylalanine on central nervous system elements in tissue culture, J. Neurol. Neurosurg. Psychiatry 29:371–374 (1966).Google Scholar
  470. 469.
    L. I. Woolf, Recent work on phenylketonuria and maple syrup urine disease (leucinosis), Proc. R. Soc. Med. 55:824–826 (1962).Google Scholar
  471. 470.
    J. H. Menkes and H. Solcher, Maple syrup disease. Effects of dietary therapy on cerebral lipids, Arch. Neurol. 16:486–491 (1967).Google Scholar
  472. 471.
    J. H. Menkes, The pathogenesis of mental retardation in phenylketonuria and other inborn errors of amino acid metabolism, Pediatrics 39:297–308 (1967).Google Scholar
  473. 472.
    J. N. Cumings, I. K. Grundt, and T. Yanagihara, Lipid changes in the brain in phenylketonuria, J. Neurol. Neurosurg. Psychiatry 31:334–337 (1968).Google Scholar
  474. 473.
    L. Crome, V. Tymms, and L. I. Woolf, A chemical investigation of the defects of myelination in phenylketonuria, J. Neurol. Neurosurg. Psychiatry 25:143–148 (1962).Google Scholar
  475. 474.
    L. Crome, The association of phenylketonuria with leucodystrophy, J. Neurol. Neurosurg. Psychiatry 25:149–153 (1962).Google Scholar
  476. 475.
    B. Gerstl, N. Malamud, L. F. Eng, and R. B. Hayman, Lipid alterations in human brains in phenylketonuria, Neurology 17:51–58 (1967).Google Scholar
  477. 476.
    J. T. R. Clarke and J. A. Lowden, Hyperphenylalaninemia: Effect on the developing rat brain, Can. J. Biochem. 47:291–295 (1969).Google Scholar
  478. 477.
    T. Inouye, P. Justice, and D. Y.-Y. Hsia, Cerebroside metabolism in experimental phenylketonuria and galactosemia, in “Inborn Disorders of Sphingolipid Metabolism” (S. M. Aronson and B. W. Volk, eds), pp. 339–357, Pergamon Press, Oxford (1967).Google Scholar
  479. 478.
    H. C. Agrawal, A. H. Bone, and A. N. Davison, Hyperphenylalaninemia and the developing brain, in “Phenylketonuria and Some Other Inborn Errors of Amino Acid Metabolism” (H. Bickel, F. P. Hudson, and L. I. Woolf, eds.), pp. 121–125, Georg Thieme Verlag, Stuttgart (1971).Google Scholar
  480. 479.
    J. L. Foote and B. W. Agranoff, Fatty acids of the brain in phenylketonuria, J. Neurochem. 11:589–594 (1964).Google Scholar
  481. 480.
    J. L. Foote and R. V. P. Tao, The effects of p-chlorophenylalanine and Phenylalanine on brain ester-bound fatty acids of developing rats, Life Sci. 7, Part II:1187–1192 (1968).Google Scholar
  482. 481.
    R. C. Johnson and S. N. Shah, Effect of hyperphenylalaninemia on fatty acid composition of lipids of rat brain myelin, J. Neurochem. 21:1225–1240 (1973).Google Scholar
  483. 482.
    P. Mandel, The control of myelin synthesis and inborn errors of metabolism, in “Functional and Structural Proteins of the Nervous System” (A. N. Davison, P. Mandel, and I. G. Morgan, eds.), pp. 241–250, Plenum Press, New York (1972).Google Scholar
  484. 483.
    J. M. Land and J. B. Clark, Inhibition of fatty acid synthesis in central nervous tissue in phenylketonuria, Biochem. Soc. Trans. 1:463–466 (1973).Google Scholar
  485. 484.
    J. M. Land and J. B. Clark, Effect of phenylpyruvate on enzymes involved in fatty acid synthesis in rat brain, Biochem. J. 134:545–555 (1973).Google Scholar
  486. 485.
    Y. H. Loo and P. Ritman, New metabolites of Phenylalanine, Nature (Lond.) 203:1237–1239 (1964).Google Scholar
  487. 486.
    D. J. Kurtz, H. Levy, and J. N. Kanfer, Cerebral lipids and amino acids in the vitamin B6-deficient suckling rat, J. Nutr. 102:291–298 (1972).Google Scholar
  488. 487.
    B. Williamson and J. G. Coniglio, The effects of pyridoxine deficiency and of caloric restriction on lipids in the developing rat brain, J. Neurochem. 18:267–276 (1971).Google Scholar
  489. 488.
    D. J. Kurtz and J. N. Kanfer, Composition of myelin lipids and synthesis of 3-ketodihy-drosphingosine in the vitamin B6-deficient developing rat, J. Neurochem. 20:963–968 (1973).Google Scholar
  490. 489.
    J. A. Sturman, P. A. Cohen, and G. E. Gaull, Effects of deficiency of vitamin B6 on transsulfuration, Biochem. Med. 3:244–251 (1969).Google Scholar
  491. 490.
    Y. H. Loo and K. Mack, Effect of hyperphenylalanmemia on vitamin B6 metabolism in developing rat brain, J. Neurochem. 19:2377–2383 (1972).Google Scholar
  492. 491.
    Y. H. Loo and V. P. Whittaker, Pyridoxal kinase in brain and its inhibition by pyridoxylidene-β-phenylethylamine, J. Neurochem. 14:997–1011 (1967).Google Scholar
  493. 492.
    J. J. Volpe and L. Laster, Trans-sulphuration in primate brain: Regional distribution of cystathionine synthase, cystathionine and taurine in the brain of the Rhesus monkey at various stages of development, J. Neurochem. 17:425–437 (1970).Google Scholar
  494. 493.
    J. J. Volpe and L. Laster, Transsuifuration in fetal and postnatal mammalian liver and brain, Biol. Neonate 20:385–403 (1972).Google Scholar
  495. 494.
    H. H. White, L. P. Rowland, S. Araki, H. L. Thompson, and D. Cowen, Homocystinuria, Arch. Neuroi. 13:455–470(1965).Google Scholar
  496. 495.
    S. N. Shah, N. A. Peterson, and C. M. McKean, Inhibition of in vitro sterol biosynthesis by Phenylalanine, Biochim. Biophys. Acta 164:604–606 (1968).Google Scholar
  497. 496.
    S. N. Shah, N. A. Peterson, and C. M. McKean, Inhibition of sterol synthesis in vitro by metabolites of Phenylalanine, Biochim. Biophys. Acta 187:236–242 (1969).Google Scholar
  498. 497.
    S. N. Shah, N. A. Peterson, and C. M. McKean, Cerebral lipid metabolism in experimental hyperphenylalaninaemia: Incorporation of 14 C-labelled glucose into total lipids, J. Neurochem. 17:279–284 (1970).Google Scholar
  499. 498.
    J. A. Bowden, R. N. Dikeman, G. Helmer Jr., and J. Broussard, Phenylketonuria: The effect of phenylpyruvic acid on lipid biosynthesis in rat liver and brain, Fed. Proc. 33:1525 (1974).Google Scholar
  500. 499.
    W. Scholz, Cerebral changes due to convulsive disorders, in “Pathology of the Nervous System” (J. Minckler, ed.) Vol. 3, pp. 2635–2654, McGraw-Hill, New York (1972).Google Scholar
  501. 500.
    U. Langenbeck, Mental retardation and inborn errors of metabolism, Lancet 1:785 (1973).Google Scholar
  502. 501.
    T. A. Tedesco and W. J. Mellman, Argininosuccinate synthetase activity and citrulline metabolism in cells cultured from a citrullinemic subject, Proc. Natl. Acad. Sci. (USA) 57:829–834 (1967).Google Scholar
  503. 502.
    G. E. Gaull, Protein nutrition in the pre-term infant, Paediatrician (1975) (in press).Google Scholar
  504. 503.
    S. P. Bessman, Genetic failure of fetal amino acid “justification”: A common basis for many forms of metabolic, nutritional, and “nonspecific” mental retardation, J. Pediatr. 81:834–842 (1972).Google Scholar
  505. 504.
    T. A. Munro, Phenylketonuria: Data on 47 British families, Ann. Eugen. 14:60–88 (1947).Google Scholar
  506. 505.
    J. H. Thompson, Relatives of Phenylketonuric patients, J. Ment. Deflc. Res. 1:67–78 (1957).Google Scholar
  507. 506.
    J. H. Edwards, Familial predisposition in man, Br. Med. Bull. 25:58–64 (1969).Google Scholar
  508. 507.
    V. Csanyi, J. Gervai and A. Lajtha, Axoplasmic transport of free amino acids, Brain Res. 56:271–284 (1973).Google Scholar
  509. 508.
    H. C. Agrawal and W. A. Himwich, Amino acids, proteins and monoamines of developing brain, in “Developmental Neurobiology” (W. A. Himwich, ed.), pp. 287–310, Charles C Thomas, Springfield, Ill. (1970).Google Scholar
  510. 509.
    A. Kanazawa and I. Sano, A method of determination of homocarnosine and its distribution in mammalian tissues, J. Neurochem. 14:211–214 (1967).Google Scholar

Copyright information

© Plenum Press, New York 1975

Authors and Affiliations

  • Gerald E. Gaull
    • 1
    • 2
  • Harris H. Tallan
    • 1
    • 2
  • Abel Lajtha
    • 3
  • David K. Rassin
    • 1
    • 4
  1. 1.Department of Pediatric ResearchNew York State Institute for Basic Research in Mental RetardationStaten IslandUSA
  2. 2.Department of Pediatrics and Clinical Genetics CenterMount Sinai School of Medicine of the City University of New YorkNew YorkUSA
  3. 3.New York State Research Institute for Neurochemistry and Drug AddictionWard’s Island, New YorkUSA
  4. 4.Department of PharmacologyMount Sinai School of Medicine of the City University of New YorkNew YorkUSA

Personalised recommendations